Climate-radial growth relationship of Polylepis australis along an altitudinal gradient in the Sierras Grandes de Córdoba, Argentina

Authors

  • Maricel G. Lanza Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.
  • Marcelo P. Chartier Instituto de Investigaciones Biológicas y Tecnológicas, CONICET - Centro de Ecología y Recursos Naturales Renovables, Facultad de Ciencias Exactas Físicas, Universidad Nacional de Córdoba.
  • Paula I. Marcora Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET. Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.18.28.1.1.620

Abstract

Altitudinal gradients represent strategic sites for studying the relationships between climate and growth in woody species. Polylepis australis Bitt. is an endemic tree of Central and Northwest Argentina mountains, growing between 900 and 2800 m a. s. l. in the Sierras Grandes of Córdoba. Previous studies found that radial growth changes with elevation, suggesting that different climatic factors regulate growth along the altitudinal distribution. However, the specific growth response to climatic factors remains unknown. The objective of the present study was to evaluate how varies the relationship between the radial growth of P. australis and temperatures and the precipitations along an altitudinal gradient in the Sierras Grandes of Córdoba. Three sampling points were established at 1200, 2100 and 2700 m a. s. l. In winter 2004 and spring 2014, dendrochronological samples were collected and ring-width chronologies were developed at the three altitudes. From the three chronologies obtained it was found that the radial growth decreases with increasing altitude and the intermediate and higher altitudes show similar interannual growth variations that could be associated with a common climatic tree-growth response. To determine the effect of temperatures and precipitations on the radial growth rate of P. australis, correlations were made between climatic chronologies and ring width chronologies. Our results suggested a significant and positive correlation between annual growth and temperatures in the November and March months. At the lower altitudinal level, growth rings were not significantly correlated with climatic variations. The present work constitutes the first dendroclimatic study developed on P. australis woodlands.

https://doi.org/10.25260/EA.18.28.1.1.620

References

Argollo, J., C. Soliz, and R. Villalba. 2004. Potencialidad dendrocronológica de Polylepis tarapacana en los Andes Centrales de Bolivia. Ecología en Bolivia 39(1):5-24.

Base climática del Aeródromo Córdoba. URL: goo.gl/Zf1zsm.

Block, J., and U. Treter. 2001. The limiting factors at the upper and lower forest limits in the mountain-woodland steppe of Northwest Mongolia Joachim Block and Uwe Treter. Pp. 22-26 in M. Kaennel Dobbertin and O. U. Braker 2001 (eds.). Proceedings of the International Conference on Tree Rings and People. Davos.

Braun Wilke, L. P., L. P. Picchetti., and G. Guzmán. 2005. Desaparición de Queñoales de la Puna Jujeña. Agraria, Revista Científica de la Facultad de Ciencias Agrarias 2:73-77.

Bruelheide, H., and K. Lieberum. 2001. Experimental tests for determining the causes of the altitudinal distribution of Meum athamanticum Jacq. in the Harz Mountains. Flora-Morphology-Geobotany-Ecophysiology 196:227-241.

Cabido, M., and M. Acosta. 1985. Estudio fitosociológico en bosques de Polylepis australis Bitt. (“tabaquillo”) en las Sierras de Córdoba, Argentina. Documents Phytosociologiques 9:385-400.

Cabido, M. 1985. Las comunidades vegetales de la Pampa de Achala, Sierras de Córdoba, Argentina. Doc Phytosociol 9:431-443.

Callaway, R. M., R. W. Brooker, P. Choler, Z. Kikvidze, C. J. Lortie, R. Michalet, L. Paolini, F. I. Pugnaire, B. Newingham, E. T. Aschehoug, C. Armas, D. Kikodze, and B. J. Cook. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844-48.

Camarero, J. J., and E. Gutiérrez. 2004. Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic change 63(1):181-200.

Chartier, M. P., M. A. Giantomasi, F. A. Roig, and D. Renison. 2016. Exposed roots as indicators of geomorphic processes: A case-study from Polylepis mountain woodlands of Central Argentina. Dendrochronologia 37:57-63.

Cingolani, A. M., D. Renison, M. Zak, and M. Cabido. 2004. Mapping vegetation in a heterogeneous mountain rangeland using. Landsat data: an alternative meted to define and classify land cover units. Remote Sensing of Environment 92:84-97.

Cingolani, A. M., M. Poca, M. A. Giorgis, M. V. Vaieretti, D. E. Gurvich, J. I. Whitworth-Hulse, and D. Renison. 2015. Water provisioning services in a seasonally dry subtropical mountain: Identifying priority landscapes for conservation. Journal of Hydrology 525:178-187.

Colladon, L. 2010. Anuario pluviométrico 1992-2010. Cuenca del Río San Antonio. Sistema del Río Suquía - Provincia de Córdoba. Instituto Nacional del Agua y del Ambiente (INAA) y Centro de Investigaciones de la Región Semiárida (CIRSA). Córdoba, Argentina.

Cook, E. 1985. A time series analysis approach to tree ring standardization. Ph. D. dissertation, University of Arizona, Tucson.

Cullen, L. E., J. G. Palmer, R. P. Duncan, and G. H. Stewart. 2001. Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research 31(11):1981-1991.

Delgado, S. C. 2000. Aplicaciones estadísticas en estudios dendrocronológicos. Pp. 79-102 en Dendrocronología en América Latina. EDIUNC, Mendoza.

Díaz, H. F., M. Grosjean, and L. Graumlich. 2003. Climate variability and change in high elevation regions: past, present and future. Climatic change 59:1-4.

Díaz, S., A. Acosta, and M. Cabido. 1994. Community structure in montane grasslands of central Argentina in relation to land use. Journal of Vegetation Science 5(4):483-488.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. InfoStat versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: www.infostat.com.ar.

Fjeldså, J., and M. Kessler. 2004. Conservación de la biodiversidad de los bosques de Polylepis de las tierras altas de Bolivia. Centro para la Investigación de la Diversidad Cultural y Biológica de los Bosques Pluviales Andinos (DIVA)

Fritts, H. C. 1976. Tree-ring and climate. Academic Press, London.

García, C. L. 2013. Utilización de información satelital y terrestre para el manejo integrado del recurso hídrico de una cuenca serrana en la Provincia de Córdoba, Argentina.

Giorgis, M. A., A. M Cingolani, I. Teich. D. Renison, and I. Hensen. 2010. Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock. Plant Ecol 207:307-310.

Gosling, W. D., J. A. Hanselman, C. Knox, B. G. Valencia, and M. B. Bush. 2009. Long‐term drivers of change in Polylepis woodland distribution in the central Andes. Journal of Vegetation Science 20:1041-1052.

Holmes, R. L. 1983. Computer-assisted quality control in tree ring dating and measurement. Tree Ring Bulletin 43:69-75.

Hoch, G., and C. Körner. 2005. Growth, demography and carbon relations of Polylepis trees at the world's highest treeline. Functional Ecology 19:941-951.

Kessler, M. 1995. Present and potential distribution of Polylepis (Rosaceae) forest in Bolivia. Pp. 281-294 in S. P. Churchill, H. Balslev, E. Forero and J. L. Luteyn (eds.). Biodiversity and Conservation of Neotropical Montane Forests. New York.

Kessler, M. 2000. Altitudinal zonation of Andean cryptogam communities. Journal of Biogeography 27(2):275-282.

Kienast, F., F. H. Schweingruber, O. U. Bräker, and E. Schär. 1987. Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Canadian Journal of Forest Research 17(7):683-696.

Körner, C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445-459.

Körner, C. 2012. Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science and Business Media.

Körner, C., and M. Diemer. 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology 1(3):179-194.

Körner, C., and J. Paulsen. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31:713-732.

Kullman, L. 1990. Dynamics of altitudinal tree-limits in Sweden: a review.

Kullman, L. 1993. Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden. Journal of Vegetation Science 4:765-772.

LaMarche, V. C., and C. W. Stockton. 1974. Chronologies from temperature-sensitive bristlecone pines at upper treeline in western United States. Tree-Ring Bull 34:21-45.

Marcora, P., I. Hensen, D. Renison, P. Seltman, and K. Wesche. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate. Diversity and Distributions 14:630-636.

Marcora, P. I., D. Renison, A. I. País-Bosch, M. R. Cabido, and P. A. Tecco. 2013. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecology and Management 291:300-307.

Marcora, P. I., P. A. Tecco, S. R. Zeballos, and I. Hensen. 2016. Influence of altitude on local adaptation in upland tree species from central Argentina. Plant Biology 19(2):123-131.

Martinelli, N. 2004. Climate from dendrocrhronology: Latest developments and results. Global Planet Change 40:129-139.

Messerli, B., and J. D. Ives. 1997. Mountains of the world: A global priority. Parthenon, New York. Pp. 495.

Morales, M. S., R. Villalba, H. R. Grau, and L. Paolini. 2004. Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080-3089.

Nicotra, A. B., O. K. Atkin, S. P. Bonser, A. M. Davidson, E. J. Finnegan, U. Mathesius, and M. van Kleunen. 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15(12):684-692.

Norton, D. A. 1985. A dendrochronological study of Nothofagus solandri tree growth along an elevational gradient, South Island, New Zealand. Pp. 159-171 in H. Turner and W. Tranquillini (eds.). Establishment and Tending of Subalpine Forests. Swiss Federal Institute of Forestry Research, Birmensdorf.

Oberhuber, W. 2004. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology 24:291-301.

Oleksyn, J., J. Modrzýnski, M. G. Tjoelker, P. B. Reich, and P. Karolewski. 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology 12:573-590.

Pais Bosch, A. I., P. A. Tecco, G. Funes, and M. Cabido. 2012. Efecto de la temperatura en la regeneración de especies leñosas del Chaco Serrano e implicancias en la distribución actual y potencial de bosques. Boletín de la Sociedad Argentina de Botánica 47(3-4):401-410.

Peng, J., X. Gou, F. Chen, J. Li, P. Liu, and Y. Zhang. 2008. Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia 26:87-96.

Rapp, J. M., M. R. Silman, J. S. Clark, C. A. Girardin, D. Galiano, and R. Tito. 2012. Intra-and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology 93:2061-2072.

Renison, D., I. Hensen, R. Suárez, and A. M. Cingolani. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? Journal of Biogeography 33:876-887.

Renison, D., I. Hensen, and R. Suárez. 2011. Landscape Structural Complexity of High‐Mountain Polylepis australis Forests: A New Aspect of Restoration Goals. Restoration Ecology 19:390-398.

Renison, D., G. A. Cuyckens, S. Pacheco, G. F. Guzmán, H. R. Grau, P. Marcora, and L. Bellis. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23:27-36.

Roig, F. A., M. Fernández, E. Gareca, S. Altamirano, and S. Monge. 2001. Estudios Dendrocronológicos en los ambientes húmedos de la puna boliviana. Revista Boliviana de Ecología 9:3-13.

Roig, F. A., and R. Villalba. 2008. Understanding climate from Patagonian tree rings. Developments in Quaternary Sciences 11:411-435.

Stokes, M. A., and T. L. Smiley. 1968. An Introduction to Tree-Ring Dating. University of Chicago Press. Chicago, IL.

Suárez, M. L., D. Renison, P. Marcora, and I. Hensen. 2008. Age-size-habitat relationships for Polylepis australis: dealing with endangered forest ecosystems. Biodiversity and Conservation 17:2617-2625.

Schweingruber, F. H. 2007. Wood structure and environment. Springer Science and Business Media.

Takahashi, K., H. Azuma, and K. Yasue. 2003. Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, Central Japan. Ecological Research 18:549-558.

Tecco, P. A., A. I. Pais-Bosch, G. Funes, P. I. Marcora, S. R. Zeballos, M. Cabido, and C. Urcelay. 2016. Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? Journal of Plant Ecology 9(4):380-392.

Thompson, L. G. 2000. Ice core evidence for climate changes in the tropics: implication for our future. Quaternary Science Reviews 19:19-35.

UNEP-WCMC (2004). United Nations Environment Programme, World Conservation Monitoring Center. URL: www.unep-wcmc.org.

Villalba, R., J. A. Boninsegna, T. T. Veblen, A. Schmelter, and S. Rubulis 1997. Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Climatic Change 36:425-454.

Villalba, R., A. Lara, J. A. Boninsegna, M. Masiokas, S. Delgado, J. C. Aravena, F. A. Roig, A. Schmelter, A. Wolodarsky, and A. Ripalta. 2003. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Climatic change 59:177-232.

Wang, T., H. Ren, and K. Ma. 2005. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees 19:736-742.

Yoo, S. J., and B. D. Wright. 2000. Persistence of growth variation in tree-ring chronologies. Forest Science 46:507-520.

Relación clima-crecimiento radial de Polylepis australis en un gradiente altitudinal en las Sierras Grandes de Córdoba, Argentina

Published

2018-05-22

How to Cite

Lanza, M. G., Chartier, M. P., & Marcora, P. I. (2018). Climate-radial growth relationship of Polylepis australis along an altitudinal gradient in the Sierras Grandes de Córdoba, Argentina. Ecología Austral, 28(1-bis), 278–290. https://doi.org/10.25260/EA.18.28.1.1.620