A functional classification of 63 common Poaceae in the "Campos" grasslands of South America
DOI:
https://doi.org/10.25260/EA.19.29.2.0.727Abstract
The natural grasslands that form part of the “Campos” of South America contain a large number of species at the paddock level (high α diversity), but little differentiation among paddocks (low β diversity). Thus, forage resources at the farm level have slightly different seasonal growth peaks, in part due to the low frequency of fertilization, the lack of differential grazing management and mowing of these plant communities. To stimulate diversification of these forage resources, it is possible to take advantage of differential responses of each type of plant community to changes in their use. Characterizing species by functional traits allows to orient the use of forage resources according their functional composition, thus increasing the diversity of vegetation types, which favors differentiation of growth peaks among paddocks. After an initial division between C 3 and C4 species, 63 Poaceae species were classified into eight groups or plant functional types (PFT) according to their preferred degree of soil fertility and use intensity. Based on the leaf dry matter content (LDMC) measured in experiments in Brazil, Uruguay and Argentina, we distinguished four PFT, two for C3 species and two for C4 species, with LDMC less than or equal to 300 mg/g. The species of these four PFT are adapted to fertile environments and intensive defoliation. Fertilizing and using more intensively vegetation dominated by species with these low LDMC can diversify the use value of paddocks, thus facilitating use of forage resources at the farm level.
https://doi.org/10.25260/EA.19.29.2.0.727
References
Ansquer, P., P. Cruz, P. Prévot, J. P. Theau, and C. Jouany. 2004a. Use of leaf traits to discriminate fertility and frequency of defoliation gradients. Proceedings of 20th European Grassland Federation, 21-24 June, Luzerne, Suisse. Pp. 760-762.
Ansquer, P., J. P. Theau., P. Cruz, J. Viegas, R. Al Haj Khaled, et al. 2004b. Caractérisation de la diversité fonctionnelle des prairies naturelles. Une étape vers la construction d’outils pour gérer les milieux à flore complexe. Fourrages 179:353-368.
Ansquer, P., P. Cruz, J. P. Theau, E. Lecloux, and M. Duru. 2005. How to simplify tools for natural grasslands characterisation based on biological measures without losing too much information? Int. Grassl. Congress, Satellite Workshop, Glasgow, July 2005. Pp. 197.
Balent, G. 1991. Construction of a reference frame for studying the changes in specific composition in pastures: the example of an oldfield succession. Options Méditerranéennes. Serie A, Séminaires 15:73-81.
Brambilla, D. M., C. Nabinger, T. R. Kunrath, P. C. F. Carvalho, I. J. Carassai, et al. 2012. Impact of nitrogen fertilization on the forage characteristics and beef calf performance on native pasture overseeded with ryegrass. Revista Brasileira de Zootecnia 41:528-536. https://doi.org/10.1590/S1516-35982012000300008.
Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring. 1987. Plant responses to multiple environmental factors. Bioscience 37(1):49-57. https://doi.org/10.2307/1310177.
Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, et al. 2003. A handbook of protocols for standardized and easy measurements of plant functional traits world-wide. Australian Journal of Botany 51:335-380. https://doi.org/10.1071/BT02124.
Cruz, P., F. L. F. Quadros, J. P. Theau, A. Frizzo, C. Jouany, et al. 2010a. Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of Brazil. Rangeland, Ecology and Management 63:350-358. https://doi.org/10.2111/08-016.1.
Cruz, P., J. P. Theau, E. Lecloux, C. Jouany, and M. Duru. 2010b. Typologie fonctionnelle de graminées fourragères pérennes: une classification multitrait. Fourrages 201:11-17.
Cruz, G., W. Baethgen, V. Picasso, and R. Terra. 2014. Análisis de sequías agronómicas en dos regiones ganaderas de Uruguay. Agrociencia Uruguay 18(1):126-132.
De Vries, D. M., and A. De Boer. 1959. Methods used in botanical grassland research in the Netherlands and their application. Herbage Abstract 29:1.
Epstein, H. E., W. K. Lauenroth, I. C. Burke, and D. P. Coffin. 1997. Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 78:722-731. https://doi.org/10.1890/0012-9658(1997)078[0722:PPOCAC]2.0.CO;2.
Fidelis, A. 2009. South Brazilian Campos grasslands: Biodiversity, conservation and the role of disturbance. In Grassland Biodiversity: habitat types, ecological processes and environmental impacts. In J. Runas and T. Dahlgren (eds.). Nova Science Publishers, Inc., Chapter 5.
Flores, O., E. Garnier, I. J. Wright, P. B. Reich, S. Pierce, et al. 2014. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution 4:2799-2811. https://doi.org/10.1002/ece3.1087.
Garnier, E., G. Laurent, A. Bellmann, S. Debain, P. Berthelier, et al. 2001a. Consistency of species ranking based on functional leaf traits. New Phytologist 152:69-83. https://doi.org/10.1046/j.0028-646x.2001.00239.x.
Garnier, E., B. Shipley, C. Roumet, and G. Laurent 2001b. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15:688-695. https://doi.org/10.1046/j.0269-8463.2001.00563.x.
Guido, A., R. D. Varela., P. Baldassini, and J. Paruelo. 2014. Spatial and temporal variability in aboveground net primary production of Uruguayan grasslands. Rangeland Ecology and Management 67(1):30-38. https://doi.org/10.2111/REM-D-12-00125.1.
Hanke, W., J. Böhner, N. Dreber, N. Jürgens, U. Schmiedel, et al. 2014. The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecological Applications 24:1188-1203. https://doi.org/10.1890/13-0377.1.
Hodgson, J. G., G. Monserrat-Marti, M. Charles, G. Jones, P. Wilson, et al. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108:1337-1345. https://doi.org/10.1093/aob/mcr225.
Kazakou, E., C. Violle C. Roumet, M. L. Navas, D. Vile, et al. 2014. Are trait-based species rankings consistent across data sets and spatial scales? Journal of Vegetation Science 25:235-247. https://doi.org/10.1111/jvs.12066.
Lepš, J., F. de Bello, P. Šmilauer, and J. Doležal. 2011. Community trait response to environment: disentangling species turnover vs. intraspecific trait variability effects. Ecography 34:856-863. https://doi.org/10.1111/j.1600-0587.2010.06904.x.
Modernel, P., W. A. Rossing, M. Corbeels, S. Dogliotti, V. Picasso, and P. Tittonell. 2016. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters 11:113002. https://doi.org/10.1088/1748-9326/11/11/113002.
Nabinger, C., P. C. D. F. Carvalho, E. C. Pinto, J. C. Mezzalira, and D. M. Brambilla, et al. 2011. Ecosystems services from natural grasslands: ¿it's possible to enhance them with more productivity? Archivos Latinoamericanos de Producción Animal 19:3-4.
Overbeck, G. E., S. C. Müller, V. D. Pillar, and J. Pfadenhauer. 2005. Fine‐scale post‐fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16(6):655-664. https://doi.org/10.1111/j.1654-1103.2005.tb02408.x.
Pallares, O. R., E. J. Berretta, and G. E. Maraschin. 2005. The South American campos ecosystem. In J. Suttie, S. G. Reynolds and C. Batello (eds.). Grasslands of the world. FAO, Rome, IT. Pp. 171-219.
Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61:167-234. https://doi.org/10.1071/BT12225.
Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1992. Leaf live-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecological Monographs 62:365-392. https://doi.org/10.2307/2937116.
Rose, L., M. C. Rubarth, D. Herteland, and C. Leuschner. 2013. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. Journal of Vegetation Science 24:239-250. https://doi.org/10.1111/j.1654-1103.2012.01455.x.
Ryser, P., and H. Lambers. 1995. Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrients supply. Plant and Soil 170:251-265. https://doi.org/10.1007/BF00010478.
Ryser, P. 1996. The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology 10:717-723. https://doi.org/10.2307/2390506
Sage, R. F., D. A. Wedin, and M. Li. 1999. The Biogeography of C4 Photosynthesis: Patterns and Controlling Factors. In R. F. Sage and R. K. Monson (eds.). C4 Plant Biology. Academic Press, New York, NY. Pp. 215-249. https://doi.org/10.1016/B978-012614440-6/50011-2.
Siebenkäs, A., J. Schumacher, and C. Roscher. 2015. Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species. AoB PLANTS 7, plv029. https://doi.org/10.1093/aobpla/plv029.
Smart, S., H. Glanville, M. C. Blanes, L. M. Mercado, and B. Emmet, et al. 2017. Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Functional Ecology 31:1336-1344. https://doi.org/10.1111/1365-2435.12832.
Soriano, A. 1991. Río de la Plata Grasslands. In Ecosystems of the World: Natural Grasslands, Vol 8A. Elsevier, Amsterdam. Van Auken and Bush 1997. Pp. 367-408.
Sosinski, E. E., and V. D. Pillar 2004. Respostas de tipos funcionais de plantas a intensidade de pastejo em vegetation campestre. Pesquisa Agropecuaria Brasileira 39:1-9. https://doi.org/10.1590/S0100-204X2004000100001.
Theau, J. P., P. Cruz, D. Fallour, C. Jouany, E. Lecloux, et al. 2010. Une méthode simplifiée de relevé botanique pour une caractérisation agronomique des prairies permanentes. Fourrages 201:19-25.
Wilson, P., K. Thompson, and J. G. Hodgson. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143:155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x.
Wright, I. J., P. B. Reich, D. Ackerly, Z. Baruch, F. Bongers, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821-827. https://doi.org/10.1038/nature02403.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Pablo Cruz, Lucrecia Lezana, Martín Durante, Martín Jaurena, Mercedes Figari, Leandro Bittencourt, Jean-Pierre Theau, Ernesto Massa, Julio Viegas, Fernando L. Ferreira de Quadros
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.