Evaluation of fungal diversity restoration in an afforestation of Polylepis australis (Rosaceae): a case study

Authors

  • Ana L. Gallo Universidad Nacional de Córdoba, CONICET, Instituto Multidisciplinario de Biología Vegetal, Laboratorio de Micología. Córdoba, Argentina.
  • Gerardo L. Robledo Universidad Nacional de Córdoba, CONICET, Instituto Multidisciplinario de Biología Vegetal, Laboratorio de Micología. Córdoba, Argentina.
  • Marcos Landi Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología General. Córdoba, Argentina.
  • Carlos Urcelay Universidad Nacional de Córdoba, CONICET, Instituto Multidisciplinario de Biología Vegetal, Laboratorio de Micología. Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.16.25.3.0.73

Abstract

Polylepis australis forest had been significantly disturbed and afforestation is an alternative to restore these ecosystems. The aim of this study is to evaluate the restoration of the fungal community in P. australis afforestation. Our hypothesis is that the fungal community varies between forest situations: high degraded, mature forest, and restored forest. Fungal variables (richness, abundance and evenness of macromicetes) were compared between a native area, an afforestation and a degraded land. To this end, 15 plots of 5x5 m were established and five of them were sampled in each season. Macromicetes fruiting bodies were collected and classified into different morpho-taxonomical groups. Principal Components Analyses and correlation analyses between the fungal variables and the plot’s structure were performed as well as correlation analysis between the fungal variables and soil chemical variables. Richness, abundance and evenness were significantly higher in the native area, intermediate in the afforestation and lower in the degraded land. The native area’s plots showed high tree cover, the afforestation ́s plots high graminoid and young trees cover, and the degraded land’s plots high forbs cover. Values of fungal variables were higher at higher tree cover and were positively correlated with soil phosphorus content and pH. The results show that, after 12 years of afforestation with P. australis, the fungal diversity in that ecosystem is higher than the observed in reference degraded land but is far from the observed in a native area. It can be hypothesized that fungi are sensitive bioindicators of forest degradation and restoration.

References

BADER, P; S JANSSON & BG JONSSON. 1995. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv., 72(3):355-362.

BLASER, S; D PRATI; B SENN-IRLET & M FISCHER. 2013. Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. Forest Ecol. Manag., 304:42-48.10.1016/j.foreco.2013.04.043.

BODDY, L & J HEILMANN-CLAUSEN. 2008. Basidiomycete community development in temperate angiosperm wood (capítulo 12). Pp. 211-237 en: Boddy, L; JC Frankland & P van West (eds.). Ecology of saprotrophic basidiomycetes. 1a. ed. Academic Press. Aberdeen, UK. Pp. 372.

BROWN, N; S BHAGWAT & S WATKINSON. 2006. Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. J. Appl. Ecol., 43(1):11-17.

CABIDO, M. 1985. Las comunidades vegetales de la Pampa de Achala, Sierras de Córdoba, Argentina. Doc. Phytosociol., 9:431-43.

CABIDO, M; G FUNES; E PUCHETA; F VENDRAMINI & S DÍAZ. 1998. A chronological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco. Candollea, 53:321-331.

CABIDO, M; A ANTÓN; M CABRERA; AM CINGOLANI; I DI TADA; ET AL. 2003. Línea de base y programa de monitoreo de la biodiversidad del Parque Nacional Quebrada del Condorito y la Reserva Hídrica Provincial Pampa de Achala. Internal Report.

CINGOLANI, AM; D RENISON; PA TECCO; DE GURVICH & M CABIDO. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J. Biogeogr., 35(3):538-551.

CINGOLANI, AM; D RENISON; M ZAK & M CABIDO. 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens. Environ., 92(1):84-97.

CHAPMAN, M & A UNDERWOOD. 2000. The need for a practical scientific protocol to measure successful restoration. Wetlands, 19(1):28-49.

CHAZDON, R. 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882):1458-1460.

COLLADON, L. 2000. Anuario Pluviométrico 1992-2000. Cuenca del Río San Antonio. Sistema del Río Suquía-Provincia de Córdoba. Instituto Nacional del Agua y del Ambiente (INAA) y Centro de Investigaciones de la Región Semiárida (CIRSA).

COLWELL, RK. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. http://viceroy.eeb.uconn.edu/estimates/

CROMACK JR, K & BA CALDWELL. 1992. The role of fungi in litter decomposition and nutrient cycling (capítulo 33). Pp. 653-668 en: Carroll, GC & DT Wicklow (eds.). The fungal community. Its organization and role in the ecosystem. 2a. ed. Marcel Dekker, Inc. Nueva York, EEUU. Pp. 976 pp.

DI RIENZO, JA; F CASANOVES; MG BALZARINI; L GONZÁLEZ; M TABLADA; ET AL. 2013. InfoStat. http://www.infostat.com.ar

ENRICO, L; G FUNES & M CABIDO. 2004. Regeneration of Polylepis australis BITT. in the mountains of central Argentina. Forest Ecol. Manag., 190:301-309.

ETTEMA, CH & DA WARDLE. 2002. Spatial soil ecology. Trends in Ecology & Evolution, 17:177-183.

FJELDSÅ, J & M KESSLER. 1996. Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A Contribution to Sustainable Natural Resource Management in the Andes. NORDECO. Copenhague, Denmark. Pp. 250.

GATES, GM; DA RATKOWSKY & SJ GROVE. 2005. A comparison of macrofungi in young silvicultural regeneration and mature forest at the Warra LTER Site in the southern forests of Tasmania. Tasforests, 16:127-152.

HEILMANN-CLAUSEN, J & M CHRISTENSEN. 2003. Fungal diversity on decaying beech logs -implications for sustainable forestry. Biodivers. Conserv., 12(5):953-973.

HERNÁNDEZ CAFFOT, ML; G ROBLEDO & LS DOMÍNGUEZ. 2013. Gasteroid mycobiota (Basidiomycota) from Polylepis australis woodlands of central Argentina. Mycotaxon, 123:491-502.

HOBBS, RJ. 2007. Setting effective and realistic restoration goals: key directions for research. Restor. Ecol., 15(2):354-357.

HOBBS, RJ; S ARICO; J ARONSON; JS BARON; P BRIDGEWATER; ET AL. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol. Biogeogr., 15(1):1-7.

KENT, M & P COKER. 1992. Vegetation description and analysis: a practical approach. Boca Ratón:CRC press. Florida, EEUU. Pp. 363.

KUJAWA, A & K KUJAWA. 2008. Effect of young midfield shelterbelts development on species richness of macrofungi communities and their functional structure. Pol. J. Ecol. 56(1):45-56.

LAUBER, CL; MS STRICKLAND; MA BRADFORD & N FIERER. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem., 40:2407-2415.

LINDNER, D; HH BURDSALL JR & GR STANOSZ. 2006. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories. Mycologia, 98(2):195-217.

MOORE, D; AC GANGE; EG GANGE & L BODDY. 2008. Fruit bodies: their production and development in relation to environment (capítulo 5). Pp. 94 en: Boddy, L; JC Frankland & P van West (eds.). Ecology of saprotrophic basidiomycetes. 1a. ed. Academic Press. Aberdeen, UK. Pp. 372.

ORIA DE RUEDA, JA; M HERNÁNDEZ RODRÍGUEZ; P MARTÍN-PINTO; V PANDO & J OLAIZOLA. 2010. Could artificial reforestations provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean areas? Forest Ecol. Manag., 260:171-180.

OVASKAINEN, O; D SCHIGEL; H ALI-KOVERO; P AUVINEN; L PAULIN; ET AL. 2013. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. The ISME Journal, 7(9):1696:1709.

PONGE, JF. 2005. Fungal communities: relation to resource succession (capítulo 8). Pp 169-180 en: Dighton, J; JF White & P Oudemans. (eds.). The fungal community. Its organization and role in the ecosystem. 3a ed. Boca Ratón:CRC press, Taylor & Francis Group. NY, EEUU. Pp. 936.

RENISON, D; I HENSEN; R SUÁREZ; AM CINGOLANI; P MARCORA; ET AL. 2010. Soil conservation in Polylepis mountain forests of Central Argentina: Is livestock reducing our natural capital? Austral Ecology, 35:435-443.

RENISON, D; GE CUYCKENS; S PACHECO; GF GUZMÁN; HR GRAU; ET AL. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral, 23(1):27-36.

RENISON, D; I HENSEN; R SUÁREZ & AM CINGOLANI. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J. Biogeogr., 33(5):876-887.

ROBLEDO, G; C URCELAY; LS DOMÍNGUEZ & M RAJCHENBERG. 2006. Taxonomy, ecology and biogeography of polypores (Badiomycetes) from Argentinian Polylepis woodlands. Can. J. Bot., 84(10):1561-1572.

ROBLEDO, G & D RENISON. 2010. Wood-decaying polypores in the mountains of central Argentina in relation to Polylepis forest structure and altitude. Fungal Ecol., 3(3):178-184.

RUIZ-JAEN, MC & TM AIDE. 2005. Restoration success: how is it being measured? Restor. Ecol., 13(3):569-577.

ROUSK, J; E BÅÅTH; PC BROOKES; CL LAUBER; C LOZUPONE; ET AL. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4:1340-1351.

SER (Society for Ecological Restoration Science and Policy Working Group). 2002. http://www.ser.org/

SPARKS, DL; AL PAGE; PA HELMKE; RH LOEPPERT; PN SOLTANPOUR; ET AL. (eds.). 1996. Methods of soil analysis. Chemical methods (Part 3). Soil Science Society of America book series. Madison, EEUU. Pp. 1390.

SWIFT, MJ. 2005. Human impacts on biodiversity and ecosystem services: an overview. (capítulo 31). Pp. 627-641 en: Dighton, J; JF White & P Oudemans. (eds.). The fungal community. Its organization and role in the ecosystem. 3a ed. Boca Raton: CRC press, Taylor & Francis Group. NY, EEUU. Pp. 936.

TORRES, RC; D RENISON; I HENSEN; R SUÁREZ & L ENRICO. 2008. Polylepis australis regeneration niche in relation to seed dispersal, site characteristics and livestock density. Forest Ecol. Manag., 254(2):255-260.

UNTERSEHER, M; M SCHNITTLER; C DORMANN & A SICKERT. 2008. Application of species richness estimators for the assessment of fungal diversity. Microbiology Letters, 282(2):205-213.

URCELAY, C & G ROBLEDO. 2004. Community structure of polypores (Basidiomycota) in Andean Alder wood in Argentina: functional groups among wood-decay fungi? Austral Ecology, 29:471-476.

URCELAY, C & G ROBLEDO. 2009. Positive relationship between wood size and basidiocarp production of polypore fungi in Alnus acuminata forest. Fungal Ecol., 2(3):135-139.

VON MÜLLER, AR; AM CINGOLANI; MV VAIERETTI & D RENISON. 2012. Estimación de carga bovina localizada a partir de frecuencia de deposiciones en un pastizal de montaña. Ecología Austral, 22:178-187.

WILKINS, S; D KEITH & P ADAM. 2003. Measuring success: evaluating the restoration of a grassy Eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor Ecol., 11(4):489-503.

YAMASHITA, S; T HATTORI; K MOMOSE; M NAKAGAWA; M AIBA; ET AL. 2008. Effects of forest use on Aphyllophoraceous fungal community structure. Biotropica, 40(3):354-362.

ZAR, JH. 1999. Biostatistical Analysis. 4th ed. Prentice Hall Inc. Upper Saddle River, NJ, EEUU.

Polylepis australis

Published

2015-12-31

How to Cite

Gallo, A. L., Robledo, G. L., Landi, M., & Urcelay, C. (2015). Evaluation of fungal diversity restoration in an afforestation of Polylepis australis (Rosaceae): a case study. Ecología Austral, 25(3), 192–203. https://doi.org/10.25260/EA.16.25.3.0.73