Galling inducing insects associated with a tropical shrub: The role of resource concentration and species interactions
DOI:
https://doi.org/10.25260/EA.19.29.1.0.751Abstract
Gall-forming insects are sophisticated sedentary herbivores that present high level of specifcity with host plant, but their performance can be affected by biotic and abiotic factors. In this study we have tested two predictions: a) plants that have a greater number of conspecifc neighbors have greater richness and abundance of gall-forming insects, and b) interspecifc competition is a force capable of shaping the organization of gall-forming insect communities in super-host plants. We used the Copaifera oblongifolia (Fabaceae)/galling insects’ system to test these predictions. Fieldwork was carried out in areas of Cerrado (Brazilian Savanna) in northern Minas Gerais, Brazil. To test the frst hypothesis, we evaluated with generalized linear mixed models, the effects of the number of conspecifc neighbors on the richness and abundance of galls associated with 67 C. oblongifolia individual plants belonging to two populations. To test the second hypothesis, we used null models to evaluate whether a plant of C. oblongifolia colonized by a species of gall is preferred or avoided by another species of gall. A total of 2901 gall-forming insects belonging to 15 species were collected from the host plant C. oblongifolia. We observed negative relationships between the number of conspecifc neighbors and the abundance and richness of gall-forming insects associated C. oblongifolia. Thus, our data did not support the resource concentration hypothesis. Instead, we used the resource dilution theory to explain the negative relation between resource concentration and frequency of attack by galling insects. Our results also showed that the co-occurrence pattern of gall-forming insects in the host plant did not differ from those expected by chance. Therefore, the structure of the gall-forming insect community associated to single C. oblongifolia plants cannot be attributed to deterministic factors such as interspecifc competition.
https://doi.org/10.25260/EA.19.29.1.0.751
References
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves, and G. Sparovek. 2014. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728.
Araújo, W. S., and F. A. G. Guilherme. 2012. Distribuição de insetos galhadores em diferentes formações vegetais e paisagens do cerrado brasileiro. Bioscience Journal 28:810-819.
Araújo, W. S., J. M. Grandez-Rios, L. L. Bargamini, and J. Kollár. 2017. Exotic species and the structure of a plant-galling network. Network Biology 7:21-32.
Arduin, M., and E. J. Kraus. 2001. Anatomia de galhas de ambrosia em folhas de Baccharis concinna e Baccharis dracunculifolia (Asteraceae). Revista Brasileira de Botância 24:63-72.
Bergamini, B. A. R., L. L. Bergamini, B. B. Santos, and W. S. Araújo. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvania, Brazil. Papéis Avulsos de Zoologia 57:413-431.
Carneiro, A. A. M, R. A. X. Borges, A. P. A. Araújo, and G. W. Fernandes. 2009. Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, Minas Gerais, Brasil. Revista Brasileira de Entomologia 53:570-592.
Coelho, M. S., M. A. A. Carneiro, C. A. Branco, R. A. X. Borges, and G. W. Fernandes. 2017. Galling insects of the brazilian páramos: species richness and composition along high-altitude grasslands. Environmental Entomology 46:1243-1253.
Cooley, J. R., C. Simon, and D. C. Marshall. 2003. Temporal separation and speciation in periodical cicadas. Bioscience 53:151-157
Cornelissen, T., and P. Stiling. 2008. Clumped distribution of oak leaf-miners between and within plants. Basic and Applied Ecology 9:67-77.
Cornelissen, T., C. D. C Guimarães, J. P. R. Viana, and S. Bárbara. 2013. Interspecific competition influences the organization of a diverse sessile insect community. Acta Oecologica 52:15-18.
Costa, F. V., M. Fagundes, and F. S. Neves. 2010. Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecología Austral 20:9-17.
Costa, F. V., R. Reis-Júnior, A. C. M. Queiroz, M. L. B. Maia, and M. Fagundes. 2016. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra annual fruiting affect plant characteristics and higher trophic level? Revista de Biología Tropical 64: 507-520.
Cuevas-Reyes, P., M. Quezada, P. Hanson, D. Rodolfo, and K. Oyama. 2004. Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology 92:707-716.
Espírito-Santo, M. M., F. S. Neves, F. R. Andrade-Neto, and G. W Fernandes. 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153:353-364.
Egan, S. P., and J. R. Ott. 2007. Host plant quality and local adaptation determine the distribution of a gall-forming herbivore. Ecology 88:2868-2879.
Fagundes, M., F. V. Costa, S. F. Antunes, M. L. B. Maia, and A. C. M. Queiroz, L. Q. Oliveira, M. L. Faria. 2013a. The role of historical and ecological factors on initial survival of Copaifera langsdorffii Desf. (Fabaceae). Acta Botanica Brasilica 27:480-487.
Fagundes, M., M. L. B. Maia, A. C. M. Queiroz, G. W. Fernandes, and F. V. Costa. 2013. Seed predation of Copaifera langsdorffii Desf. (Fabaceae) by Rhinochenus brevicollis Chevrolat (Coleoptera: Curculionidae) in a Cerrado fragment. Ecologia Austral 23:218-221.
Fagundes, M., F. S. Neves, and G. W. Fernandes. 2005. Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecological Entomology 30:28-35.
Fagundes, M., R. C. F. X., M. L. Faria, L. G. O. Lopes, P. Cuevas-Reyes, and R. Reis- Junior. 2018. Plant phenological asynchrony and community structure of gall-inducing insects associated with a super-host tropical tree species. Ecology and Evolution 8:10687-10697.
Fernandes, G. W. and R. P. Martins. 1985. As galhas: tumores de plantas. Ciência Hoje 4:58-64.
Fleck, T., and C. R. Fonseca. 2007. Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. Neotropical Biology and Conservation 2:36-45.
Grez, A. A., and R. H. González. 1995. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia 103:471-474.
Höglund, S. 2014. Timing of growth determines fitness and performance of a galling insect on willow. Ecological Entomology 39:159-167.
Jennings, D. E., J. J. Krupa, T. Raffel, and J. R. Rohr. 2010. Evidence for competition between carnivorous plants and spiders. Proceedings of the Royal Society 277:3001-3008.
Johansson J., N. P. Kristensen, J. Nilsson, and N. Jonzén. 2015. The eco-evolutionary consequences of interspecific phenological asynchrony - a theoretical perspective. Oikos 124:102-112.
Joshi, J., S. J. Otway, J. Koricheva, A. B. Pfisterer, J. Alphei, B. A. Roy, M. Scherer-Lorenzen, B. Schmid, E. M. Spehn, and A. Hector. 2004. Bottom-up effects and feedbacks in simple and diverse experimental plant communities. Insects and Ecosystem Function. W. W. Weisser and E. Seimann (eds.). Springer Verlag, Berlin.
Kaplan, I., and R. F. Denno. 2007. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecology Letters 10:977-994.
Kuchenbecker, J., and M. Fagundes. 2018. Diversity of insects associated with two common plants of the Brazilian Cerrado: responses of two guilds of herbivores to bottom-up and top-down forces. European Journal of Entomology 115:354-363.
Kruger, R. F., C. J. B. Carvalho, and P. B. Ribeiro. 2010. Assembly rules in muscid fly assemblages in the grassland biome of southern Brazil. Neotropical Entomology 39:345-353.
Maia, V. C., and M. A. P. Azevedo. 2009. Micro-himenópteros associados com galhas de Cecidomyiidae (Diptera) em restingas do estado do Rio de Janeiro (Brasil). Biota Neotropica 9:151-163.
Maia, V. C., M. A. G. Magenta, and S. E. Martins. 2008. Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioga (São Paulo, Brasil). Biota Neotropical 8:167-197.
Marques, E. S. D. A, P. W. Price, and N. S. Cobb. 2000. Resource abundance and insect herbivore diversity on woody fabaceous desert plants. Environmental Entomology 29:696-703.
Morin, X., L. Fahse, M. Scherer-Lorenzen, and H. Bugmann. 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14:1211-1219.
Otway S. J., T. A. Hector, and J. H. Lawton. 2005. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. Journal of Animal Ecology 74:234-240.
Price, P. W., G. W. Fernandes, and G. L. Waring. 1987. Adaptative nature of insect galls. Environmental Entomology 16:15-24.
Ralph, P. C. 1977. Effect of host plant density on populations of a specialized, seed-sucking bug, Oncopeltus Fasciatus. Ecology 58:799-809.
Rhainds, M., and G. English-Loeb. 2003. Testing the resource concentration hypothesis with tarnished plant bug on strawberry: density of hosts and patch size influence the interaction between abundance of nymphs and incidence of damage. Ecological Entomology 28: 348-358.
Reitz, S. R., and J. T. Trumble. 2002. Intraspecific and interspecific differences in two Liriomyza leafminer species in California. Entomologia Experimentalis et Applicata 102:101-113.
Ribas, C. R., and J. H. Schoereder. 2002. Are all ant mosaics caused by competition? Oecologia 131:606-611.
Root, R. B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica Oleracea). Ecologial Monographs 43:95-124.
Santos, I. M., V. P. Lima, E. K. S. Soares, M. Paula, and D. C. Calado. 2017. Insect galls in three species of Copaifera L. (Leguminosae, Caesalpinioideae) occurring sympatrically in a Cerrado area (Bahia, Brazil). Biota Neotropica 18:1-5.
Santos, J. C., and G. W. Fernandes. 2010. Interactions of gall-forming species at different plant spatial scales. Arthropod-Plant Interactions 4:247-255.
Souza, M. L., and M. Fagundes. 2017. Seed predation of Copaifera langsdorffii (Fabaceae): a tropical tree with supra-annual fruiting. Plant Species Biology 32:66-73.
Stone, L. R. A. 1990. The checkerboard score and species distributions. Oecologia 85:74-79.
Stireman, J. O., J. D. Nason, and S. B. Heard. 2005. Host-associated genetic differentiation in phytophagous insects: General phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59:2573-2587.
Stone, G. N., and K. Schönrogge. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution 18:512-522.
Stone, L., and A. Roberts. 1990. The checkerboard score and species distributions. Oecologia 85:74-79.
Tack, A. J. M., O. Ovaskainen, P. J. Harrison, and T. Roslin. 2009. Competition as a structuring force in leaf miner communities. Oikos 118:809-818.
Tahvanainen, J. O., and R. B. Root. 1972. The influence of vegetational diversity on the population ecology of a specialized herbivore Phyllotreta cruciferae (Coleoptera: Crysomelidae). Oecologia 10:321-346.
Veldtman, R., and M. A. McGeoch. 2003. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecology 28:1-13.
Veloso, A. C., P. S. Silva, W. K. Siqueira, K. L. Duarte, I. L. Gomes, H. T. Santos, and M. Fagundes. 2017. Intraspecific variation in seed size and light intensity affect seed germination and initial seedling growth of a tropical shrub. Acta Botanica Brasilica 31:736-741.
Whipple, A. V., W. G. Abrahamson, M. A. Khamiss, P. L. Heinrich, A. G. Urian, and E. M. Northridge. 2009. Host-Race Formation: Promoted by Phenology, Constrained by Heritability. Journal of Evolutionary Biology 22: 793-804.
Yamamura, K. 2002. Biodiversity and stability of herbivore populations: influences of the spatial sparseness of food plants Population Ecology 44:33-40.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Marcilio Fagundes, Elizete M. Barbosa, Jefferson B. B. S. Oliveira, Betânia G. S. Brito, Kamilla T. Freitas, Kleiperry F. Freitas, Ronaldo Reis-Junior
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors retain their rights as follows: 1) by granting the journal the right to its first publication, and 2) by registering the published article with a Creative Commons Attribution License (CC-BY 4.0), which allows authors and third parties to view and use it as long as they clearly mention its origin (citation or reference, including authorship and first publication in this journal). Authors can make other non-exclusive distribution agreements as long as they clearly indicate their origin and are encouraged to widely share and disseminate the published version of their work.