Forest structure of three endemic species of the genus Polylepis (Rosaceae) in central Perú

Authors

  • Vladimir F. Camel Laboratorio de Biotecnología y Biología Molecular. Universidad Continental. Junín, Perú.
  • Harold R. Quispe-Melgar Laboratorio de Biotecnología y Biología Molecular. Universidad Continental. Junín, Perú.
  • Fressia N. Ames-Martínez Laboratorio de Biotecnología y Biología Molecular. Universidad Continental. Junín, Perú.
  • Wendy C. Navarro Romo Laboratorio de Biotecnología y Biología Molecular. Universidad Continental. Junín, Perú.
  • María C. Segovia-Salcedo Departamento de Ciencias de la Vida y de la Agricultura. Universidad de las Fuerzas Armadas ESPE. Quito, Ecuador.
  • Michael Kessler Systematic and Evolutionary Botany. University of Zurich. Zurich, Swizerland.

DOI:

https://doi.org/10.25260/EA.19.29.3.0.812

Abstract

Polylepis (Rosaceae) is the dominant tree genus in High-Andean forest ecosystems. These ecosystems are severely threatened, but little is known about their structure and functioning. We provide the first reports of the dasometric structure and spatial distribution of eight forests of Polylepis canoi, P. flavipila and P. rodolfovasquezii in the Central Peruvian Andes as fundamental information for management and conservation policies. We sampled all individuals ≥1 cm of diameter at ground level (DGL) in 20 plots of 10x10 m in each forest, and measured total height (TH) and DGL. Also, we mapped the spatial distribution of the individuals in two plots of 30x30 m (X and Y axes). We found differences in the dasometric structure between forests of the same species, which, in some cases, were associated with climate, soil or elevation variables. However, no well-defined pattern was found. The allometric relationships of the linear and non-linear models did not differ widely with respect to the R2 nor to the Akaike (AIC) scores, indicating that the forests did not show a saturation of tree height with increasing diameter. In the P. canoi forests, individuals with diameters ≥10 cm were the most abundant. In contrast, the forests of P. rodolfo-vasquezii showed a predominance of individuals with diameters ≤10 cm, whereas P. flavipila presented an altered structure with no relationship between DGL and TH in one of the evaluated forests. The analysis of spatial distribution according to the Ripley’s K function on a small scale revealed that P. flavipila and P. canoi presented random patterns, whereas P. rodolfo-vasquezii showed an aggregate pattern. Finally, our results showed that even forests of the same species have different dasometric structures, whereas spatial patterns differ only between species. So, caution must be taken when extrapolating information between species or forests during ecological studies and conservation actions.

https://doi.org/10.25260/EA.19.29.3.0.812

Author Biography

Vladimir F. Camel, Laboratorio de Biotecnología y Biología Molecular. Universidad Continental. Junín, Perú.

Tengo formación profesional en el area de ciencias forestales y del medio ambiente, vengo desarrollo investigaciones relacionados al manejo forestal utilizando tecnicas dendrocronologicas, asi mismo de manejo de datos cientificos utilizando lenguajes de programación R Project y Python. En la actualidad desarrollo investigaciones relacionado a la ingenieria genetica en Tectona grandis.

References

Anfodillo, T., M. Carrer, F. Simini, I. Popa, J. R. Banavar, and A. Maritan. 2012. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proceedings of the Royal Society B: Biological Sciences 280:20122375-20122375. https://doi.org/10.1098/rspb.2012.2375.

Arizapana, M., G. Teodoro, V. Camel, M. Castañeda, and E. Van Den Berg. 2016a. Distribución de la hemiparásita Tristerix chodatianus en los bosques de Polylepis en Laraos - Perú. https://doi.org/10.13140/RG.2.2.28307.99369.

Arizapana, M., G. Teodoro, V. Camel, M. Castañeda, and E. Van Den Berg. 2016b. Efectos antrópicos sobre la distribución espacial y conservación de bosques de Polylepis en Laraos - Perú.

Auguie, B., and A. Antonov. 2017. Package "gridExtra": Miscellaneous functions for "Grid" Graphics.

Baddeley, A., R. Turner, and E. Rubak. 2018. Package "spatstat": Spatial point pattern analysis, model-fitting, simulation and test.

Bader, M. Y., and J. J. Ruijten. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography 35:711-723. https://doi.org/10.1111/j.1365-2699.2007.01818.x.

Boza, T., H. Quispe-Melgar, and M. Kessler.2019. Taxonomic Reevaluation of the Polylepis sericea Complex(Rosaceae), with Description of a New Species. Systematic Botany. 44(2):324-334. https://doi.org/10.1600/036364419X15562052252225.

Bunyan, M., S. Bardhan, A. Singh, and S. Jose. 2015. Effect of topography on the distribution of tropical montane forest fragments: a predictive modelling approach. Journal of Tropical Forest Science 27:30-38.

Camel, V., and M. Castañeda. 2018. Aplicación de R-Project y Python para modelamiento de nicho ecológico, crecimiento, interacción intra-específica y bioinformática estructural forestal (Degree thesis). Universidad Nacional Del Centro Del Perú, Huancayo - Perú.

Camel, V., M. Arizapana-Almonacid, M. Pyles, E. Galeano, H. Quispe-Melgar, Z. Ninanya-Parra, F. Ames-Martínez, E. Requena-Rojas, and M. Kessler. 2019. Using dendrochronology to trace the impact of the hemiparasite Tristerix chodatianus on Andean Polylepis trees. Plant Ecology 220. https://doi.org/10.1007/s11258-019-00961-w.

Castañeda, M., M. Arizapana, R. Quispe, V. Camel, and E. Van Den Berg. 2017. Distribuição espacial da area basal e altura total de Polylepis incana var. flavipila Bitter na Reserva Nor Yauyos Cochas.

Castro, J. 2014. Caracterización del bosque de Polylepis de Jurau, microcuenca de Paria, distrito de Huasta, provincia de Bolognesi, departamento de Ancash (Degree thesis). Universidad Nacional Agraria La Molina, Lima. https://doi.org/10.21704/rea.v14i1-2.77.

Cierjacks, A., S. Salgado, K. Wesche, and I. Hensen. 2008. Post-Fire Population Dynamics of Two Tree Species in High-Altitude Polylepis Forests of Central Ecuador. Biotropica 40:176-182. https://doi.org/10.1111/j.1744-7429.2007.00361.x.

Cierjacks, A., K. Wesche, and I. Hensen. 2007. Potential lateral expansion of Polylepis forest fragments in central Ecuador. Forest Ecology and Management 242:477-486. https://doi.org/10.1016/j.foreco.2007.01.082.

Coblentz, D., and P. Keating. 2008. Topographic controls on the distribution of tree islands in the high Andes of southwestern Ecuador. Journal of Biogeography. 35:2026-2038. https://doi.org/10.1111/j.1365-2699.2008.01956.x.

Du, H., F. Hu, F. Zeng, K. Wang, W. Peng, H. Zhang, Z. Zeng, F. Zhang, and T. Song. 2017. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Scientific Reports 7. https://doi.org/10.1038/s41598-017-15789-5.

Fernández, M., M. Mercado, S. Arrázola, and E. Martínez. 2001. Estructura y composición florística de un fragmento boscoso de Polylepis besseri hieron Subsp besseri en Sacha Loma (Cochabamba). Revista Boliviana de Ecología y Conservación Ambiental 9:15-27.

Fjeldså, J. 2002. Polylepis forests - vestiges of a vanishing ecosystem in the Andes. Ecotropica 8:111-123.

Fjeldså, J., and M. Kessler. 2004. Conservación de la biodiversidad de los bosques de Polylepis de las tierras Altas de Bolivia: una contribución al manejo sustentable en los Andes, DIVA technical report. FAN [u.a.], Santa Cruz de la Sierra.

Grothendieck, G. 2013. Package "nls2": Non-linear regression with brute force.

Hensen, I., A. Cierjacks, H. Hirsch, M. Kessler, K. Romoleroux, D. Renison, and K. Wesche. 2012. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species: Genetic structure of Polylepis incana. Global Ecology and Biogeography 21:455-464. https://doi.org/10.1111/j.1466-8238.2011.00691.x.

Hertel, D., and K. Wesche. 2008. Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above and below-ground structure, and regeneration. Trees 22:303-315. https://doi.org/10.1007/s00468-007-0185-4.

Hurtado, L. 2014. Análisis de la heterogeneidad ambiental a pequeña escala y el patrón espacial de Polylepis sp. en el Área de Conservación Privada Mantanay, Urubamba - Cusco (Degree thesis). Universidad Nacional de San Antonio Abad Del Cusco, Cusco - Perú.

Kahm, M., and M. Kschischo. 2012. Package "grofit".

Karger, D. N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, and M. Kessler. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4:170122. https://doi.org/10.1038/sdata.2017.122.

Kessler, M. 2006. Bosques de Polylepis. Pp. 110-120. Botánica Económica de Los Andes Centrales. Bolivia.

Kessler, M. 2002. The "Polylepis problem”: where do we stand? Ecotropica 8:97-110.

Kessler, M., and A. Schmidt-Lebuhn. 2006. Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms Diversity and Evolution 6:67-69. https://doi.org/10.1016/j.ode.2005.04.001.

Kessler, M., J. M. Toivonen, S. P. Sylvester, J. Kluge, and D. Hertel. 2014. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Frontiers in Plant Science 5. https://doi.org/10.3389/fpls.2014.00194.

Martínez, O., and F. Villarte. 2009. Estructura dasométrica de las plantas de un parche de Polylepis besseri incarum y avifauna asociada en la Isla del Sol (Lago Titicaca, La Paz - Bolivia). Ecología en Bolivia. 44(1):36-49.

Mendoza, W. 2005. Especie nueva de Polylepis (Rosaceae) de la cordillera Vilcabamba (Cusco, Perú). Revista Peruana de Biología 12:103-106. https://doi.org/10.15381/rpb.v12i1.2364.

Mendoza, W., and A. Cano. 2012. El género Polylepis en el Perú: Taxonomía, morfología y distribución. Editorial Académica Española.

Mendoza, W., and A. Cano. 2011. Diversidad del género Polylepis (Rosaceae, Sanguisorbeae) en los Andes peruanos. Revista Peruana de Biología 18:197-200. https://doi.org/10.15381/rpb.v18i2.228.

Mendoza, W., and B. León. 2006. Rosaceae endémicas Del Perú. Revista Peruana de Biología, El libro rojo de las plantas endémicas Del Perú 13:583-585. https://doi.org/10.15381/rpb.v13i2.1909.

Morales, L. 2017. Polylepis regeneration and the potential for forest expansion in the Peruvian Andes: the influence of cattle and environmental conditions (PhD Thesis). University of California, Davis - EE.UU.

Orellana-Mendoza, E., F. Choque-Bonifacio, D. Zuñiga-López, J. Paucar-Carrión, M. Piñatelli-Bracamonte, and D. Baltazar-Zuñiga. 2016. Propiedades físicas y químicas del suelo Sphagnum magellanicum BRID, Junín-Perú. Revista Científica y de Humanidades 4:17-25.

Pacheco, K. 2015. Estructura de los rodales de Polylepis reticulata del Parque Nacional El Cajas: estado actual para proyección futura en el marco del cambio climático (Degree thesis). Universidad de Cuenca, Cuenca - Ecuador.

Pinheiro, J., and D. Bates, D. 2018. Package "nlme": Linear and nonlinear mixed effects models.

Renison, D., I. Hensen, and R. Suárez. 2011. Landscape Structural Complexity of High-Mountain Polylepis australis Forests: A New Aspect of Restoration Goals. Restoration Ecology 19:390-398. https://doi.org/10.1111/j.1526-100X.2009.00555.x.

Renison, D., I. Hensen, R. Suárez, and A. Cingolani. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? Journal of Biogeography 33:876-887. https://doi.org/10.1111/j.1365-2699.2006.01455.x.

Renison, D., I. Hensen, and A. Cingolani. 2004. Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecology and Management 196:327-333. https://doi.org/10.1016/j.foreco.2004.03.025.

Sevillano-Ríos, C. S., and A. D. Rodewald. 2017. Avian community structure and habitat use of Polylepis forests along an elevation gradient. PeerJ 5:e3220. https://doi.org/10.7717/peerj.3220.

Sylvester, S., F. Heitkamp, M. D. Sylvester, H. Jungkunst, H. Sipman, J. Toivonen, C. Gonzales Inca, J. Ospina, and M. Kessler. 2017. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Scientific Reports 7. https://doi.org/10.1038/s41598-017-03500-7.

Toivonen, J., C. Gonzales-Inca, M. Bader, K. Ruokolainen, and M. Kessler. 2018. Elevational Shifts in the Topographic Position of Polylepis Forest Stands in the Andes of Southern Peru. Forests 9:1-10. https://doi.org/10.3390/f9010007.

Trinidad, H., and A. Cano. 2016. Composición florística de los bosques de Polylepis Yauyinazo y Chaqsii-Chaqsii, Reserva Paisajística Nor Yauyos-Cochas, Lima. Revista Peruana de Biología 23:271. https://doi.org/10.15381/rpb.v23i3.12862.

Valenzuela, L., and M. Villalba. 2015. A new species of Polylepis (Rosaceae) from Peru. Arnaldoa 22:329-338. https://doi.org/10.22497/202.

Wickham, H., and W. Chang. 2016. Package “ggplot2”: Create elegant data visualisations using the grammar of graphics.

Wilke, C. 2017. Package “cowplot”: Streamlined Plot theme and Plot annotations for ggplot2.

Zutta, B., and P. Rundel. 2017. Modeled Shifts in Polylepis Species Ranges in the Andes from the Last Glacial Maximum to the Present. Forests 8:232. https://doi.org/10.3390/f8070232.

Zutta, B., P. Rundell, S. Saatchi, J. Casana, P. Gauthier, A. Soto, Y. Velazco, and W. Buermann. 2012. Prediciendo la distribución de Polylepis: bosques andinos vulnerables y cada vez más importantes. Revista Peruana de Biología 19: 205-212. https://doi.org/10.15381/rpb.v19i2.849.

Forest structure of three endemic species of the genus Polylepis (Rosaceae) in central Perú

Published

2019-08-17

How to Cite

Camel, V. F., Quispe-Melgar, H. R., Ames-Martínez, F. N., Navarro Romo, W. C., Segovia-Salcedo, M. C., & Kessler, M. (2019). Forest structure of three endemic species of the genus Polylepis (Rosaceae) in central Perú. Ecología Austral, 29(3), 285–295. https://doi.org/10.25260/EA.19.29.3.0.812