Seasonal succession of gelatinous zooplankton (medusae and ctenophores) from Mar del Plata Harbor, Argentina (SW Atlantic Ocean)

Authors

  • F. Alejandro Puente Tapia Departamento de Ciencias Marinas, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
  • Gabriel Genzano Departamento de Ciencias Marinas, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.

DOI:

https://doi.org/10.25260/EA.19.29.3.0.880

Abstract

Temporal variation of the population dynamics of the medusae and ctenophores (gelatinous zooplankton) is described over an annual cycle in the Mar del Plata Harbor, Argentina. A total of 18 species were identified, 3 of which were ctenophores (2 of Class Tentaculata and 1 of Nuda) and 15 medusae (14 of Class Hydrozoa and 1 of Scyphozoa). A species of hydromedusae, Annatiara affinis, was observed for the first time in the Argentine Sea. In both groups, species richness and abundances showed the lowest values in the cold period (austral autumn-winter) and the highest values in the warm period (spring-summer). The meroplanktonic medusae Obelia sp. and Eucheilota ventricularis as well as the holoplanktonic Liriope tetraphylla represented 94.2% of the total abundances of this group (classified as dominant). In the ctenophores, the dominant species were Pleurobrachia pileus and Mnemiopsis leidyi, which accounted for 99.3% of the ctenophores. Monthly medusae succession indicated that holoplanktonic species were dominant over practically all the annual cycle in terms of abundance, while considering species richness values, meroplanktonic species showed highest values. Ctenophores (considering abundance values) was displayed alternating periods of approximately three months of dominance between P. pileus and M. leidyi. The Bray-Curtis similarity index performed on medusae identified two groups of seasons with faunal affinity, the 1) cold and 2) warm periods, with the water temperature and non-gelatinous zooplankton abundances as the environmental factors that best explained this variability (BIO-ENV analysis), while for ctenophores, temporal faunal homogeneity was observed and a single group with faunal affinity was identified.

https://doi.org/10.25260/EA.19.29.3.0.880

Author Biographies

F. Alejandro Puente Tapia, Departamento de Ciencias Marinas, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.

Estudiante de doctorado

Gabriel Genzano, Departamento de Ciencias Marinas, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.

Investigador Independiente de CONICET

References

Acevedo-Trejos, E., G. Brandt, J. Bruggeman, and A. Merico. 2015. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports 5:1-8. https://doi.org/10.1038/srep08918.

Alldredge, A. L. 1984. The quantitative significance of gelatinous zooplankton as pelagic consumers. Pp. 407-433 in M. J. R. Fasham (ed.). Flow of energy and materials in marine ecosystems: theory and practice. Plenum Press, London, UK. https://doi.org/10.1007/978-1-4757-0387-0_16.

Arai, M. N. 1992. Active and passive factors affecting aggregations of Hydromedusae: a review. Scientia Marina 56:99-108.

Ballard, L., and A. Mayers. 2000. Observations on the seasonal occurrence and abundance of gelatinous zooplankton in Lough Hyne, Co. Cork, South-West Ireland. Biology and Environment Proceedings of the Royal Irish Academy B 100:75-83.

Bastida, R. 1971. Las incrustaciones biológicas en el Puerto de Mar del Plata, período 1966-67. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales. Hidrobiología III 2:203-285.

Behrends, G., and G. Schneider. 1995. Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel-bight (Western Baltic-Sea). Marine Ecology Progress Series 127:39-45. https://doi.org/10.3354/meps127039.

Benovic, A., J. Dubravko, and A. Bender. 1987. Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature 326:597-600. https://doi.org/10.1038/326597a0.

Blackett, M., C. H. Lucas, R. Harmer, and P. Licandro. 2015. Population ecology of Muggiaea atlantica (Cnidaria, Siphonophora) in the Western English Channel. Marine Ecology Progress Series 535:129-144. https://doi.org/10.3354/meps11423.

Boero, F. 1994. Fluctuations and variations in coastal marine environments. Marine Ecology 15:3-25. https://doi.org/10.1111/j.1439-0485.1994.tb00038.x.

Boero, F., J. Bouillon, C. Gravili, M. P. Miglietta, T. R. Parsons, and S. Piraino. 2008. Gelatinous plankton: irregularities rule the world (sometimes). Marine Ecology Progress Series 356:299-310. https://doi.org/10.3354/meps07368.

Clarke, K. R., and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Second edition. Plymouth Marine Laboratory, Plymouth, UK.

Costello, J. H., and R. Coverdale. 1998. Planktonic feeding and evolutionary significance of Lobate body plan within the ctenophora. Biological Bulletin 195:247-248. https://doi.org/10.2307/1542863.

Daly, M., M. R. Brugler, P. Cartwright, A. G. Collins, M. N. Dawson, D. G. Fautin, S. C. France, C. S. Mcfadden, D. M. Opresko, E. Rodríguez, S. L. Romano, and J. L. Stake. 2007. The Phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127-182.

Di Mauro, R., F. Capitanio, and M. D. Viñas. 2009. Capture efficiency for small dominant mesozooplankters (Copepoda, Appendicularia) off Buenos Aires Province (34°S-41°S9, Argentine Sea, using two plankton mesh sizes. Brazilian Journal of Oceanography 57:205-214. https://doi.org/10.1590/S1679-87592009000300004.

Dutto, M. S., G. N. Genzano, A. Schiariti, J. Lecanda, M. S. Hoffmeyer, and P. Pratolongo. 2017. Medusae and ctenophores from Bahía Blanca Estuary and neighboring inner shelf (Southwest Atlantic Ocean, Argentina). Marine Biodiversity Records 10:1-14. https://doi.org/10.1186/s41200-017-0114-1.

Gaitán, E. N. 2004. Distribución, abundancia y estacionalidad de Liriope tetraphylla (Hidromedusae) en el Océano Atlántico Sudoccidental y su rol ecológico en el estuario del Río de la Plata. Degree thesis. Universidad Nacional de Mar del Plata, Buenos Aires, Argentina. Pp. 42.

Genzano, G., H. Mianzan, and J. Bouillon. 2008a. Hydromedusae (Cnidaria: Hydrozoa) from the temperate southwestern Atlantic Ocean: a review. Zootaxa 1750:1-18. https://doi.org/10.11646/zootaxa.1750.1.1.

Genzano, G., H. Mianzan, L. Díaz-Briz, and C. Rodríguez. 2008b. On the occurrence of Obelia medusa blooms and empirical evidence of unusual massive accumulations of Obelia and Amphisbetia hydroids on the Argentina shoreline. Latin America Journal Aquatic Research 36:301-307. https://doi.org/10.3856/vol36-issue2-fulltext-11

Giangrande, A., S. Geraci, and G. Belmonte. 1994. Life-cycle and life-history diversity in marine invertebrates and the implications in community dynamics. Oceanography and Marine Biology: An Annual Review 32:305-333.

Goy, J. 1997. The medusae (Cnidaria, Hydrozoa) and their trophic environment: an example in the north-western Mediterranean. Annales de l´lnstitut Océanographique, Paris 63:47-56.

Graham, W. M., F. Pagés, and W. M. Hamner. 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199-212. https://doi.org/10.1023/A:1011844208119. https://doi.org/10.1023/A:1011876004427.

Guerrero, R. A., and A. Piola. 1997. Masas de agua en la plataforma continental. El Mar Argentino y sus recursos pesqueros 1:107-118.

Haddock, H. D. 2004. A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530/531:549-556. https://doi.org/10.1007/s10750-004-2653-9.

Krebs, C. J. 1999. Ecological methodology. Second edition. Benjamin Cummings, Menlo Park.

Mackas, D. L., and G. Beaugrand. 2010. Comparison of zooplankton time series. Journal of Marine Systems 79:286-304. https://doi.org/10.1016/j.jmarsys.2008.11.030.

Mianzan, H. W. 1999. Ctenophora. Pp. 561-573 in D. Boltovskoy (ed.). South Atlantic Zooplankton. Backhuys Publishers, Leiden, The Netherlands.

Mianzan, H. W., and M. E. Sabatini. 1985. Estudio preliminar sobre distribución y abundancia de Mnemiopsis maccradyi en el estuario de Bahía Blanca, Argentina (Ctenophora). Spheniscus 1:53-68.

Mills, C. E. 1993. Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bulletin of Marine Science 53:194-203.

Nagata, R. M., M. Nogueira Jr., and M. A. Haddad. 2014. Faunistic survey of Hydromedusae (Cnidaria, Medusozoa) from the coast of Paraná State, Southern Brazil. Zootaxa 3768:291-326. https://doi.org/10.11646/zootaxa.3768.3.3.

Odum, E. 1969. Strategy of ecosystem development. Science 164:262-270. https://doi.org/10.1126/science.164.3877.262.

Oliveira, O. M., T. P. Miranda, E. M. Araujo, P. Ayón, C. M. Cedeño-Poso, A. A. Cepeda-Mercado, P. Córdoba, A. F. Cunha, G. N. Genzano, M. A. Haddad, H. W. Mianzan, A. E. Migotto, L. S. Miranda, A. C. Morandini, R. M. Nagata, K. B. Nascimento, M. Nogueira Jr., S. Palma, J. Quiñones, C. S. Rodríguez, F. Scarabino, A. Schiariti, S. N. Stampar, V. B. Tronolone, and A. C. Marques. 2016. Census of Cnidaria (Medusozoan) and Ctenophora from South American marine waters. Zootaxa 4194:1-256. https://doi.org/10.11646/zootaxa.4194.1.1.

Pagés, F., M. G. White, and P. G. Roadhouse. 1996. Abundance of gelatinous carnivorous in the nekton community of the Antarctic Polar Frontal Zone in summer 1994. Marine Ecology Progress Series 141:139-147. https://doi.org/10.3354/meps141139.

Pitt, K. A., A. C. Budarf, J. G. Browne, and R. H. Condon. 2014. Bloom and Bust: Why do blooms of jellyfish collapse? Pp. 79-103 in K. Pitt and C. Lucas (eds.). Jellyfish Blooms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7015-7_4.

Purcell, J. E. 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Annales de l´Institut océanographique, Paris 73:125-137.

Purcell, J. E., and C. E. Mills. 1988. The correlation between nematocyst types and diets in pelagic Hydrozoa. Pp. 463-485 in D. Hessinger and H. Lenhoff (eds.). The biology of nematocysts. Academic Press, San Diego, USA. https://doi.org/10.1016/B978-0-12-345320-4.50029-8.

Ramírez, F. C. 1981. Zooplancton y producción secundaria. Parte I. Distribución y variación estacional de los copépodos. Contribuciones del Instituto nacional de Investigación y Desarrollo Pesquero, Mar del Plata 383:202-212.

Ramírez, F. C., and M. O. Zamponi. 1981. Hydromedusae. Pp. 443-469 in D. Boltovskoy (ed.). Atlas del zooplankton del Atlántico sudoccidental y métodos de trabajo con el zooplancton marino. INIDEP, Mar del Plata, Argentina.

Raskoff, K. A., F. A. Sommer, W. M. Hamner, and K. M. Cross. 2003. Collection and culture techniques fir gelatinous zooplankton. Biological Bulletin 204:68-80. https://doi.org/10.2307/1543497.

Richardson, A. J. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65:279-295. https://doi.org/10.1093/icesjms/fsn028.

Richardson, A. J., A. Bakun, G. C. Hays, and M. J. Gibbons. 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24:312-322. https://doi.org/10.1016/j.tree.2009.01.010.

Rodríguez, C. S. 2012. Hidromedusas del Atlántico sudoccidental: Biodiversidad y patrones de distribución. PhD Thesis. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina. Pp. 213.

Rodríguez, C. S., A. C. Marques, H. W. Mianzan, V. B. Tronolone, A. E. Migotto, and G. N. Genzano. 2017. Environment and life cycles influence distribution patterns of hydromedusae in austral South America. Marine Biology Research 13:659-670. https://doi.org/10.1080/17451000.2017.1280170.

Romagnan J.-B., L. Legendre, L. Guidi, J.-L. Jamet, D. Jamet, L. Mousseau, M.-L. Pedrotti, M. Picheral, G. Gorsky, C. Sardet, and L. Stemmann. 2015. Comprehensive model of annual plankton succession based on the whole plankton time series approach. PLoS ONE 10: e0119219. https://doi.org/10.1371/journal.pone.0119219.

Schneider, G., and G. Behrends. 1998. Top-down control in a neritic plankton system by Aurelia aurita medusae: a summary. Ophelia 48:71-82. https://doi.org/10.1080/00785236.1998.10428677.

Schiariti, A., M. S. Dutto, D. Y. Pereyra, G. Failla Siquier, and A. C. Morandini. 2018. Medusae (Scyphozoa and Cubozoa) from southwestern Atlantic and Subantarctic region (32-60°S, 34-70° W): species composition, spatial distribution and life history traits. Latin American Journal of Aquatic Research 46: 240-257. https://doi.org/10.3856/vol46-issue2-fulltext-1.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry. The principles and practice of statistical in biological research. Third edition. W. H. Freeman, New York, USA.

Viñas, M. D., R. M. Negri, G. D. Cepeda, D. Hernández, R. Silva, M. C. Daponte, and F. L. Capitanio. 2013. Seasonal succession of zooplankton in coastal waters of the Argentine Sea (Southwest Atlantic Ocean): prevalence of classical or microbial food webs. Marine Biology Research 9:371-382. https://doi.org/10.1080/17451000.2012.745003.

Yoshida, T., M. Kagami, T. B. Gurung, and J. Urabe. 2001. Seasonal succession of zooplankton in the north basin of Lake Biwa. Aquatic Ecology 35:19-29. https://doi.org/10.1023/A:1011498202050.

Zar, J. H. 1996. Biostatistical analysis. Third edition. Prentice-Hall International Editions, New Jersey, USA.

Sucesión estacional de zooplancton gelatinoso (medusae y ctenophores) del puerto de Mar del Plata, Argentina (Océano Atlántico sudoccidental)

Published

2019-11-11

How to Cite

Puente Tapia, F. A., & Genzano, G. (2019). Seasonal succession of gelatinous zooplankton (medusae and ctenophores) from Mar del Plata Harbor, Argentina (SW Atlantic Ocean). Ecología Austral, 29(3), 339–351. https://doi.org/10.25260/EA.19.29.3.0.880