Efecto de la transición antropogénica desde ecosistemas forestales a ecosistemas sin árboles sobre la descomposición de broza

Autores/as

  • Natalia Pérez Harguindeguy Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales–Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Ana M. Cingolani Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Lucas Enrico Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales–Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • María V. Vaieretti Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Melisa A. Giorgis Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales–Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • María L. Moreno Instituto de Ecorregiones Andinas (CONICET-Universidad Nacional de Jujuy)
  • Valeria Falczuk Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Diego E. Gurvich Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales–Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Gustavo A. Bertone Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Sandra M. Díaz Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales–Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Marcelo R. Cabido Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)

DOI:

https://doi.org/10.25260/EA.22.32.2.1.1887

Palabras clave:

deforestación, pérdida de masa de broza, materiales estándar, descomponibilidad, calidad de broza, broza leñosa, Sub-Andino, Chaco Serrano, Espinal, Chaco Árido

Resumen

La transformación de los bosques en paisajes sin árboles como resultado del disturbio (transiciones de deforestación) es un proceso en desarrollo en muchos lugares del mundo. En este trabajo revisamos el contexto histórico de estas transformaciones y luego nos enfocamos en sus consecuencias sobre la descomposición. También presentamos un estudio de caso basado en cuatro sistemas del centro de la Argentina (Sub-Andino, Bosque Montano, Espinal y Chaco Árido) en los que evaluamos cómo las transiciones de deforestación pueden modificar la descomposición de mezclas naturales de broza incubadas in situ al modificar sus controles. Mostramos que aunque existen evidencias de las consecuencias de las transiciones de deforestación en las condiciones climáticas locales y en la calidad de la broza, no está claro cómo esos cambios impactarán en la descomposición de las mezclas naturales de broza a campo. En nuestro estudio de caso mostramos que las transiciones de deforestación no generan un cambio en la descomposición de sustratos estándar, pero sí aumentan consistentemente la descomponibilidad de las mezclas naturales de broza. Posiblemente, como consecuencia de este patrón, la descomposición de mezclas de broza in situ aumenta cuando los bosques se transformaron en fisonomías sin árboles a lo largo de todos los sistemas analizados. Más allá de nuestros hallazgos, nuestro análisis destaca la necesidad de entender el comportamiento de los controles de la descomposición para interpretar adecuadamente su integración en la descomposición de mezclas in situ y las consecuencias de la deforestación en el reciclado de carbono y nutrientes. En concordancia con nuestros resultados, la literatura reciente muestra que la presencia de broza no-foliar y las variaciones del ambiente local tendrían un rol importante en el reciclado de C y nutrientes, incluso a escalas regionales.

Citas

Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439-449. https://doi.org/10.2307/3546886.

Aguilar, R., A. Calviño, L. Ashworth, N. Aguirre-Acosta, L. M. Carbone, G. Albrieu-Llinás, M. Nolasco, A. Ghilardi, and L. Cagnolo. 2018. Unprecedented plant species loss after a decade in fragmented subtropical Chaco Serrano forests. PloS ONE 13:e0206738. https://doi.org/10.1371/journal.pone.0206738.

Alauzis, M. V., M. J. Mazzarino, E. Raffaele, and L. Roselli. 2004. Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. For Ecol Manage 192:131-142. https://doi.org/10.1016/j.foreco.2003.11.014.

Anderson, T. R., E. C. Rowe, L. Polimene, E. Tipping, C. D. Evans, C. D. G. Barry, D. A. Hansell, K. Kaiser, V. Kitidis, D. J. Lapworth, D. J. Mayor, D. T. Monteith, A. E. Pickard, R. J. Sanders, B. M. Spears, R. Torres, A. M. Tye, A. J. Wade, and H. Waska. 2019. Unified concepts for understanding and modelling turnover of dissolved organic matter from freshwaters to the ocean: the UniDOM model. Biogeochemistry 146:105-123. https://doi.org/10.1007/s10533-019-00621-1.

Araujo, P. I., and A.T Austin. 2020. Exotic pine forestation shifts carbon accumulation to litter detritus and wood along a broad precipitation gradient in Patagonia, Argentina. For Ecol Manage 460:117902. https://doi.org/10.1016/j.foreco.2020.117902.

Armenteras, D., J. M. Espelta, N. Rodríguez, and J. Retana. 2017. Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980-2010).Glob Environ Change 46:139-147. https://doi.org/10.1016/j.gloenvcha.2017.09.002.

Armenteras, D., M. C. Meza, T. M. González, I. Oliveras, J. K. Balch, and J. Retana. 2021. Fire threatens the diversity and structure of tropical gallery forests. Ecosphere 12:e03347.kl. https://doi.org/10.1002/ecs2.3347.

Armesto, J. J., D. Manuschevich, A. Mora, C. Smith-Ramírez, R. Rozzi, A. M. Abarzúa, and P. A. Marqueta. 2010. From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land use Policy 27:148-160. https://doi.org/10.1016/j.landusepol.2009.07.006.

Austin, A. T., and P. M. Vitousek. 2000. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J Ecol 88:129-138. https://doi.org/10.1046/j.1365-2745.2000.00437.x.

Boddy, L., and S. C. Watkinson. 1995. Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:1377-1383. https://doi.org/10.1139/b95-400.

Both, S., D. M. Elias, U. H. Kritzler, N. J. Ostle, and D. Johnson. 2017. Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest. Ecol Evol 7:9307-9318. https://doi/10.1002/ece3.3460.

Bradford, M. A., R. J. Warren II, P. Baldrian, T. W. Crowther, D. S. Maynard, E. E. Oldfield, W. R. Wieder, S. A. Wood, and J. R. King. 2014. Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625-630. https://doi.org/10.1038/NCLIMATE2251.

Bradford, M. A., B. Berg, D. S. Maynard, W. R. Wieder, and S. A. Wood. 2016. Understanding the dominant controls on litter decomposition. J Ecol 104:229-238. https://doi.org/10.1111/1365-2745.12507.

Bradford, M. A., G. C. Veen, A. Bonis, E. M. Bradford, A. T. Classen, J. H. C. Cornelissen, T. W. Crowther, J. R. De Long, G. T. Freschet, P. Kardol, M. Manrubia-Freixa, D. S. Maynard, G. S. Newman, R. S. P. Logtestijn, M. Viketoft, D. A. Wardle, W. R. Wieder, S. A. Wood, and W. H. van der Putten. 2017. A test of the hierarchical model of litter decomposition. Nature Ecol Evol 1:1836-1845. https://doi.org/10.1038/s41559-017-0367-4.

Brose, U., and H. Hillebrand. 2016. Biodiversity and ecosystem functioning in Dynamic landscapes. Phil Trans R Soc B 371:20150267. https://doi.org/10.1038/s41559-017-0367-4.

Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, J. J. Cantero, and A. T. R. Acosta. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Appl Veg Sci 21:298-311. https://doi.org/10.1111/avsc.12369.

Carvalho, E. M., and V. S. Uieda. 2010. Input of litter in deforested and forested areas of a tropical headstream. Braz J Biol 70:283-288. https://doi.org/10.1023/A:1021220600302.

Chen, Y., Y. Liu, J. Zhang, W. Yang, R. He, and C. Deng. 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci Rep 8:1-13. https://doi.org/10.1038/s41598-018-33186-4.

Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. Brookshire, and J. F. Franklin. 1999. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49:288-297. https://doi.org/10.2307/1313612.

Cingolani, A. M., D. Renison, P. A. Tecco, D. E. Gurvich, and M. Cabido. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538-551. https://doi.org/10.1111/j.1365-2699.2007.01807.x.

Conant, R. T., K. Paustian, and E. T. Elliott. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343-355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2.

Conti, G., N. Pérez-Harguindeguy, F. Quétier, L. D. Gorné, P. Jaureguiberry, G. A. Bertone, L. Enrico, A. Cuchietti, and S. Díaz. 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric Ecosyst Environ 197:68-76. http://doi.org/10.1016/j.agee.2014.07.025.

Conti, G., E. Kowaljow, F. Baptist, C. Rumpel, A. Cuchietti, N. Pérez Harguindeguy, and S. Díaz. 2016. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant Soil 403:375-387. https://doi.org/10.1007/s11104-016-2816-2.

Cornelissen, J. H., N. Pérez-Harguindeguy, S. Díaz, J. P. Grime, B. Marzano, M. Cabido, F. Vendramini, and B. Cerabolini. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191-200. https://doi.org/10.1046/j.1469-8137.1999.00430.x.

Cornelissen, J. H., U. Sass-Klaassen, L. Poorter, K. van Geffen, R. S. van Logtestijn, J. van Hal, L. Goudzwaard, F. J. Sterck, R. K. W. M. Klaassen, G. T. Freschet, A. van der Wal, H. Eshuis, J. Zuo, W. de Boer, T. Lamers, M. Weemstra, V. Cretin, R. Martin, J. den Ouden, M. P. Berg, R. Aerts, G. M. J. Mohren, and M. M. Hefting. 2012. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. Ambio 41:231-245. https://doi.org/10.1007/s13280-012-0304-3.

Cornwell, W. K., J. H. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. Van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Díaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. Victoria Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

Cuchietti, A. 2016. Efectos del uso de la tierra y la biodiversidad funcional sobre el ciclado de la materia orgánica en el centro-oeste de Argentina. Tesis de Doctorado en Ciencias Biológicas-FCEFyN-Universidad Nacional de Córdoba. Pp. 178.

Danneyrolles, V., S. Dupuis, G. Fortin, M. Leroyer, A. de Römer, R. Terrail, M. Vellend, Y. Boucher, J. Laflamme, Y. Bergeron, and D. Arseneault. 2019. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat Commun 10:1-7. https://doi.org/10.1038/s41467-019-09265-z.

De Frenne, P., F. Zellweger, F. Rodríguez-Sánchez, B. Scheffers, K. Hylander, M. Luoto, M. Vellend, K. Verheyen, and J. Lenoir. 2019. Global buffering of forest understory temperatures. Nat Ecol Evol 3:744 740. https://doi.org/10.1038/s41559-019-0842-1.

De Frenne, P., J. Lenoir, M. Luoto, B. R. Scheffers, F. Zellweger, J. Aalto, M. B. Ashcroft, D. M. Christiansen, G. Decocq, K. De Pauw, S. Govaert, C. Greiser, E. Gril, A. Hampe, T. Jucker, D. H. Klinges, I. A. Koelemeijer, J. J. Lembrechts, R. Marrec, C. Meeussen, J. Ogée, V. Tyystjärvi, P. Vangansbeke, and K. Hylander. 2021. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob Chang Biol 27:2279-2297. https://doi.org/10.1111/gcb.15569.

Dearden, F. M., H. Dehlin, D. A. Wardle, and M. C. Nilsson. 2006. Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence. Oikos 115:453-462. https://doi.org/10.1111/j.2006.0030-1299.15354.x.

Díaz, S., and M. Cabido. 1997. Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463-474. https://doi.org/10.2307/3237198.

Dí́az, S., and M. Cabido. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646-655. https://doi.org/10.1016/s0169-5347(01)02283-2.

D'Odorico, P., Y. He, S. Collins, S. F. De Wekker, V. Engel, and J. D. Fuentes. 2013. Vegetation–microclimate feedbacks in woodland–grassland ecotones. Glob Ecol Biogeogr 22:364-379. https://doi.org/10.1111/geb.12000.

Donohue, I., O. L. Petchey, J. M. Montoya, A. L. Jackson, L. McNally, M. Viana, K. Healy, M. Lurgi, N. E. O'Connor, and M. C. Emmerson. 2013. On the dimensionality of ecological stability. Ecol Lett 16:421-429. https://doi.org/10.1111/ele.12086.

Driscoll, D. A., D. B. Lindenmayer, A. F. Bennett, M. Bode, R. A. Bradstock, G. J. Cary, M. F. Clarke, N. Dexter, R. Fensham, G. Friend, M. Gill, S. James, G. Kay, D. A. Keith, C. MacGregor, J. Russell-Smith, D. Salt, J. E. M. Watson, R. J. Williams, and A. York. 2010. Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biol Conserv 143:1928-1939. https://doi.org/10.1016/j.biocon.2010.05.026.

Ellis, E. C., N. Gauthier, K. K. Goldewijk, R. B. Bird, N. Boivin, S. Díaz, D. Q. Fuller, J. L. Gill, J. O. Kaplan, N. Kingston, H. Locke, C. N. H. McMichael, D. Ranco, T. C. Rick, M. R. Shaw, L. Stephens, J.-C. Svenning, and J. E. M. Watson. 2021. People have shaped most of terrestrial nature for at least 12,000 years. Proc Natl Acad Sci USA 118:e2023483118. https://doi.org/10.1073/pnas.2023483118.

Elmore, A. J., and G. P. Asner. 2006. Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest. Glob Chang Biol 12:1761-1772. https://doi.org/10.1111/j.1365-2486.2006.01198.x.

Eviner, V. T., and F. S. III. Chapin. 2003. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455-485. https://doi.org/10.1146/annurev.ecolsys.34.011802.132342.

Fajardo, A., and M. J. Gundale. 2015. Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. For Ecol Manage 357:60-67. https://doi.org/10.1016/j.foreco.2015.08.012.

Fernandez, R. D., M. L. Moreno, R. Aragón, and N. Pérez Harguindeguy. 2021. Ligustrum lucidum invasion decreases abundance and relative contribution of soil fauna to litter decomposition but increases decomposition rate in a subtropical montane forest of NW Argentina. Can J For Res 52:261-268. https://doi.org/10.1139/cjfr-2021-0169.

Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. DoleŽal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Lepš, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, F. Quétier, M. Robson, M. Sternberg, J.-P. Theau, A. Thébault, and M. Zarovali. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598-611. https://doi.org/10.1890/08-0418.1.

Frangi, J. L., L. L. Richter, M. D. Barrera, and M. Aloggia. 1997. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Can J For Res 27:1095-1102. https://doi.org/10.1139/cjfr-27-7-1095.

Freschet, G. T., R. Aerts, and J. H. Cornelissen. 2012. A plant economics spectrum of litter decomposability. Funct Ecol 26:56-65. https://doi.org/10.1111/j.1365-2435.2011.01913.x.

Freschet, G. T., W. K. Cornwell, D. A. Wardle, T. G. Elumeeva, W. Liu, B. G. Jackson, V. G. Onipchenko, N. A. Soudzilovskaia, J. Tao, and J. H. C. Cornelissen. 2013. Linking litter decomposition of above‐and below‐ground organs to plant–soil feedbacks worldwide. J Ecol 101:943-952. https://doi.org/10.1111/1365-2745.12092.

Gaertner, M. A., O. B. Christensen, J. A. Prego, J. Polcher, C. Gallardo, and M. Castro. 2001. The impact of deforestation on the hydrological cycle in the western Mediterranean: an ensemble study with two regional climate models. Clim Dyn 17:857-873. https://doi.org/10.1007/s003820100151.

Garnier, E., S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, C. Fortunel, H. Freitas, C. Golodets, K. Grigulis, C. Jouany, E. Kazakou, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quétier, M. Robson, C. Roumet, G. Rusch, C. Skarpe, M. Sternberg, J.-P. Theau, A. Thébault, D. Vile, and M. P. Zarovali. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967-985. https://doi.org/10.1093/aob/mcl215.

Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall, and S. Hättenschwiler. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372-380. https://doi.org/10.1016/j.tree.2010.01.010.

Giam, X. 2017. Global biodiversity loss from tropical deforestation. Proc Natl Acad Sci USA 114:5775-5777. https://doi.org/10.1073/pnas.1706264114.

Giorgis, M. A., A. M. Cingolani, I. Teich, and M. Poca. 2020. Can livestock coexist with Polylepis australis forests in mountains of central Argentina? Setting thresholds for a land sharing landscape. For Ecol Manage 457:117728. https://doi.org/10.1016/j.foreco.2019.117728.

Giorgis, M. A., S. R. Zeballos, L. Carbone, H. Zimmermann, H. von Wehrden, R. Aguilar, A. E. Ferreras, P. A. Tecco, E. Kowaljow, F. Barri, D. E. Gurvich, P. Villagra, and P. Jaureguiberry. 2021. A review of fire effects across South American ecosystems: the role of climate and time since fire. Fire Ecology 17:1-20. https://doi.org/10.1186/s42408-021-00100-9.

González-Polo, M., A. Fernández-Souto, and A. T. Austin. 2013. Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems 16:1025-1038. https://doi.org/10.1007/s10021-013-9665-0.

Graesser, J., T. M. Aide, H. R. Grau, and N. Ramankutty. 2015. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett 10:034017. https://doi.org/10.1088/1748-9326/10/3/034017.

Grau, H. R., N. I. Gasparri, and T. M. Aide. 2008. Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Glob Chang Biol 14:985-997. https://doi.org/10.1111/j.1365-2486.2008.01554.x.

Hanna, L., A. L. Kissick, E. McCroskey, and J. D. Holland. 2019. Resilience to disturbance is a cross‐scale phenomenon offering a solution to the disturbance paradox. Ecosphere 10:e02682. https://doi.org/10.1002/ecs2.2682.

Harmon, M. E. 2009. Woody detritus its contribution to carbon dynamics of old-growth forests: the temporal context. Pp. 159-190 in C. Wirth, G. Gleixner and M. Heimann (eds.). Old‐Growth Forests, Ecological Studies. Springer, Berlin, Heidelberg. Germany. https://doi.org/10.1007/978-3-540-92706-8_8.

Harmon, M. E., B. G. Fasth, M. Yatskov, D. Kastendick, J. Rock, C. W. Woodall. 2020. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag 15:1-21. https://doi.org/10.1186/s13021-019-0136-6.

Holling, C. S. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1-23. https://doi.org/10.1007/978-3-642-45455-4_11.

Houspanossian, J., M. Nosetto, and E. G. Jobbágy. 2013. Radiation budget changes with dry forest clearing in temperate Argentina. Glob Chang Biol 19:1211-1222. https://doi.org/10.1111/gcb.12121.

Houspanossian, J., R. Giménez, E. Jobbágy, and M. Nosetto. 2017. Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric For Meteorol 232:118-127. https://doi.org/10.1111/gcb.12121.

Hoyos, L. E., A. M. Cingolani, M. R. Zak, M. V. Vaieretti, D. E. Gorla, and M. R. Cabido. 2013. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci 16:260-271. https://doi.org/10.1111/j.1654-109x.2012.01218.x.

Hoyos, L. E., M. R. Cabido, and A. M. Cingolani. 2018. A multivariate approach to study drivers of land-cover changes through remote sensing in the Dry Chaco of Argentina. ISPRS Int J Geoinf 7:170. https://doi.org/10.3390/ijgi7050170.

Johnson, E. A., and K. Miyanishi (eds.). 2021. Plant disturbance ecology: the process and the response. 2nd edition. Elsevier. Amsterdam, Países Bajos.

Keeley, J. E. 2012. Fire in mediterranean climate ecosystems - a comparative overview. Israel J Ecol and Evolution 58:123-135. https://doi.org/10.1560/ijee.58.2-3.123.

Keeley, J. E., and J. G. Pausas. 2019. Distinguishing disturbance from perturbations in fire-prone ecosystems. Int J Wildland Fire 28:282-287. https://doi.org/10.1071/wf18203.

Kéfi, S., V. Domínguez‐García, I. Donohue, C. Fontaine, E. Thébault, V. Dakos. 2019. Advancing our understanding of ecological stability. Ecol Lett 22:1349-1356. https://doi.org/10.1111/ele.13340.

Killingbeck, K. T., and W. G. Whitford. 1996. High foliar nitrogen in desert shrubs: an important ecosystem trait or defective desert doctrine. Ecol 77:1728–37. https://doi.org/10.2307/2265778.

Kitzberger, T., G. L. W. Perry, J. Paritsis, J. H. Gowda, A. J. Tepley, A. Holz, and T. T. Veblen. 2016. Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. N Z J Bot 54:247-272. https://doi.org/10.1080/0028825X.2016.1151903.

Kooch, Y., A. S. Piri, and G. A. D Tilaki. 2021. Conversion of forest to rangelands suppress soil fauna and flora densities during long-term in mountain ecosystems. Ecol Eng 165:106241. https://doi.org/10.1016/j.ecoleng.2021.106241.

Köchy, M., and S. D. Wilson. 1997. Litter decomposition and nitrogen dynamics in aspen forest and mixed‐grass prairie. Ecology 78:732-739. https://doi.org/10.2307/2266053.

Koteen, L. E., D. D. Baldocchi, and J. Harte. 2011. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands. Environ Res Lett 6: 044001. https://doi.org/10.1088/1748-9326/6/4/044001.

Kowaljow, E., M. S. Morales, J. I. Whitworth‐Hulse, S. R. Zeballos, M. A. Giorgis, M. Rodríguez Catón, D. E. Gurvich. 2018. A 55‐year‐old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad Dev 30:266-277. https://doi.org/10.1002/ldr.3219.

Kozák, D., M. Svitok, M. Wiezik, M. Mikoláš, S. Thorn, A. Buechling, J. Hofmeister, R. Matula, V. Trotsiuk, R. Bače, K. Begovič, V. Čada, M. Dušátko, M. Frankovič, J. Horák, P. Janda, O. Kameniar, T. A. Nagel, J. L. Pettit, J. M. Pettit, M. Synek, A. Wieziková, and M. Svoboda. 2021. Historical disturbances determine current taxonomic, functional and phylogenetic diversity of saproxylic beetle communities in temperate primary forests. Ecosystems 24:37-55. https://doi.org/10.1007/s10021-020-00502-x.

Laiho, R., and C. E. Prescott. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763-777. https://doi.org/10.1139/x03-241.

Lavelle, P., E. Blanchart, A. Martin, S. Martin, and A. Spain. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130-150. https://doi.org/10.2307/2389178.

Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x.

Longo, M. S., C. Urcelay, and E. Nouhra. 2011. Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. For Ecol Manage 262:348-354. https://doi.org/10.1016/j.foreco.2011.03.041.

Lorenzo, L., N. Pérez-Harguindeguy, F. Casanoves, and A. A. de Oliveira. 2014. Recovering from forest-to-pasture conversion: leaf decomposition in Central Amazonia, Brazil. J Trop Ecol 30:93-96. https://doi.org/10.1017/s0266467413000771.

Lousier, J. D., and D. Parkinson. 1976. Litter decomposition in a cool temperate deciduous forest. Can J Bot 54:419-436. https://doi.org/10.1139/b76-041.

Magliano, P. N., R. Giménez, J. Houspanossian, R. A. Páez, M. D. Nosetto, R. J. Fernández, and E. G. Jobbágy. 2017. Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. Ecohydrology 10:e1879. https://doi.org/10.1002/eco.1879.

Malhi, Y. 2018. Ancient deforestation in the green heart of Africa. Proc Natl Acad Sci USA 115:3202-3204. https://doi.org/10.1073/pnas.1802172115.

Mallik, A. U. 1995. Conversion of temperate forests into heaths: role of ecosystem disturbance and ericaceous plants. Environmental Management 19:675-684. https://doi.org/10.1007/bf02471950.

Mallik, A. U. 2003. Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Critical Reviews in Plant Sciences 22:341-366. https://doi.org/10.1080/713610860.

Marchant, R., S. Brewer, T. Webb III, and S. T. Turvey. 2009. Holocene deforestation: a history of human-environmental interactions, climate change, and extinction. Pp. 213-234 in S. T. Turvey (ed.). Holocene Extinctions. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199535095.003.0011.

Marchant, R., S. Richer, O. Boles, C. Capitani, C. J. Courtney-Mustaphi, P. Lane, M. E. Prendergast, D. Stump, G. De Cort, J. O. Kaplan, L. Phelps, A. Kay, D. Olago, N. Petek, P. J. Platts, P. Punwong, M. Widgren, S. Wynne-Jones, C. Ferro-Vázquez, J. Benard, N. Boivin, A. Crowther, A. Cuní-Sanchez, N. J. Deere, A. Ekblom, J. Farmer, J. Finch, D. Fuller, M.-J. Gaillard-Lemdahl, L. Gillson, E. Githumbi, T. Kabora, R. Kariuki, R. Kinyanjui, E. Kyazike, C. Lang, J. Lejju, K. D. Morrison, V. Muiruri, C. Mumbi, R. Muthoni, A. Muzuka, E. Ndiema, C. Kabonyi Nzabandora, I. Onjala, A. Pas Schrijver, S. Rucina, A. Shoemaker, S. Thornton-Barnett, G. van der Plas, E. E. Watson, D. Williamson, and D. Wright. 2018. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth-Science Reviews 178:322-378. https://doi.org/10.1016/j.earscirev.2017.12.010.

Martin, A., J. F. Gallardo, and I. Santa Regina. 1997. Long-term decomposition process of leaf litter from Quercus pyrenaica forests across a rainfall gradient (Spanish central system). Annales des sciences forestières 54:191-202. https://doi.org/10.1051/forest:19970206.

Mayer, P. M. 2008. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecol 33:222-230. https://doi.org/10.1016/j.actao.2007.11.001.

Mesquita, R. C. G., P. Delamonica, and W. F. Laurence. 1999. Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. Biol Conserv 91:129-134. https://doi.org/10.1016/S0006-3207(99)00086-5.

Miehe, G., S. Miehe, F. Schlütz, K. Kaiser, and L. Duo. 2006. Palaeoecological and experimental evidence of former forests and woodlands in the treeless desert pastures of Southern Tibet (Lhasa, AR Xizang, China). Palaeogeography, Palaeoclimatology, Palaeoecology 242:54-67. https://doi.org/10.1016/j.palaeo.2006.05.010.

Morecroft, M. D., M. E. Taylor, and H. R. Oliver. 1998. Air and soil microclimates of deciduous woodland compared to an open site. Agric For Meteorol 90:141-156. https://doi.org/10.1016/s0168-1923(97)00070-1.

Mundo, I. A., R. Villalba, T. T. Veblen, T. Kitzberger, A. Holz, J. Paritsis, and A. Ripalta. 2017. Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8:e01932. https://doi.org/10.1002/ecs2.1932.

Newman, E. A. 2019. Disturbance ecology in the Anthropocene. Frontiers in Ecol Evol 7:147. https://doi.org/10.5377/ribcc.v6i11.8479.

Newton, A. C., G. B. Stewart, G. Myers, A. Diaz, S. Lake, J. M. Bullock, and A. S. Pullin. 2009. Impacts of grazing on lowland heathland in north-west Europe. Biol Conserv 142:935-947. https://doi.org/10.1016/j.biocon.2008.10.018.

Niemann, K. O., and M. C. Edgell. 1993. Preliminary analysis of spatial and temporal distribution of soil moisture on a deforested slope. Physical Geography 14:449-464. https://doi.org/10.1080/02723646.1993.10642491.

Nosetto, M. D., E. Luna Toledo, P. N. Magliano, P. Figuerola, L. J. Blanco, and E. G. Jobbágy. 2020. Contrasting CO2 and water vapour fluxes in dry forest and pasture sites of central Argentina. Ecohydrology 13:e2244. https://doi.org/10.1002/eco.2244.

Ochoa‐Quintero, J. M., T. A. Gardner, I. Rosa, S. F. de Barros Ferraz, and W. J. Sutherland. 2015. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conservation Biology 29:440-451. https://doi.org/10.1111/cobi.12446.

Ordway, E. M., G. P. Asner, and E. F. Lambin. 2017. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ Res Lett 12:044015. https://doi.org/10.1088/1748-9326/aa6509.

Paritsis, J., T. T. Veblen, and A. Holz. 2015. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire‐prone shrublands in Patagonia. J Veg Sci 26:89-101. https://doi.org/10.1111/jvs.12225.

Paudel, E., G. G. Dossa, M. de Blécourt, P. Beckschäfer, J. Xu, and R. D. Harrison. 2015. Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere 6:1-20. https://doi.org/10.1890/es15-00112.1.

Pausas, J. G., and W. J. Bond. 2020. Alternative biome states in terrestrial ecosystems. Trends in Plant Science 25:250-263. https://doi.org/10.1016/j.tplants.2019.11.003.

Pérez-Harguindeguy, N., S. Díaz, J. H. Cornelissen, and M. Cabido. 1997. Comparación experimental de la tasa de descomposición foliar de especies vegetales del centro-oeste de Argentina. Ecología Austral 7:87-94.

Pérez-Harguindeguy, N., S. Díaz, F. Vendramini, D. E. Gurvich, A. M. Cingolani, M. A. Giorgis, and M. Cabido. 2007. Direct and indirect effects of climate on decomposition in native ecosystems from central Argentina. Austral Ecol 32:749-757. https://doi.org/10.1111/j.1442-9993.2007.01759.x.

Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167-234. https://doi.org/10.1071/bt12225.

Pilon, N. A., M. G. Cava, W. A. Hoffmann, R. C. Abreu, A. Fidelis, and G. Durigan. 2021. The diversity of post‐fire regeneration strategies in the cerrado ground layer. J Ecol 109:154-166. https://doi.org/10.1111/1365-2745.13456.

Poca, M., M. V. Vaieretti, A. M. Cingolani, and N. Pérez-Harguindeguy. 2015. Scaling-up from species to ecosystems: How close can we get to actual decomposition? Acta Oecol 64:1-9. https://doi.org/10.1016/j.actao.2015.02.005.

Poca, M., A. M. Cingolani, D. E. Gurvich, V. Saur Palmieri, and G. Bertone. 2018. Water storage dynamics across different types of vegetated patches in rocky highlands of central Argentina. Ecohydrology 11:e1981. https://doi.org/10.1002/eco.1981.

Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytol 193:30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x.

Portillo-Estrada, M., M. Pihlatie, J. F. Korhonen, J. Levula, A. K. Frumau, M. Portillo-Estrada, M. Pihlatie, J. F. J. Korhonen, J. Levula, A. K. F. Frumau, A. Ibrom, J. J. Lembrechts, L. Morillas, L. Horváth, S. K. Jones, and Ü. Niinemets. 2016. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13:1621-1633. https://doi.org/10.5194/bg-13-1621-2016.

Quested, H., O. Eriksson, C. Fortunel, and E. Garnier. 2007. Plant traits relate to whole‐community litter quality and decomposition following land use change. Funct Ecol 21:1016-1026. https://doi.org/10.1111/j.1365-2435.2007.01324.x.

Reiners, W. A., A. F. Bouwman, W. F. J. Parsons, and M. Keller. 1994. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4: 363-377. https://doi.org/10.2307/1941940.

Renison, D., I. Hensen, R. Suarez, and A. M. Cingolani. 2006. Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J Biogeogr 33:876-887. https://doi.org/10.1111/j.1365-2699.2006.01455.x.

Renison, D., I. Hensen, R. Suarez, A. M. Cingolani, P. Marcora, M. A. Giorgis. 2010. Soil conservation in Polylepis mountain forests of Central Argentina: Is livestock reducing our natural capital? Austral Ecol 35:435-443. https://doi.org/10.1111/j.1442-9993.2009.02055.x.

Renison, D., L. Morales, G. A. Cuyckens, C. S. Sevillano, and D. M. Cabrera Amaya. 2018. Ecología y conservación de los bosques y arbustales de Polylepis: ¿qué sabemos y qué ignoramos? Ecología Austral 28:163-174. https://doi.org/10.25260/EA.18.28.1.1.522.

Riutta, T., E. M. Slade, D. P. Bebber, M. E. Taylor, Y. Malhi, P. Riordan, D. W. Macdonald, M. D. Morecroft. 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124-131. https://doi.org/10.1016/j.soilbio.2012.02.028.

Roberts, N., R. M. Fyfe, J. Woodbridge, M. J. Gaillard, B. A. Davis, J. O. Kaplan, L. Marquer, F. Mazier, A. B. Nielsen, S. Sugita, A.-K. Trondman, and M. Leydet. 2018. Europe’s lost forests: a pollen-based synthesis for the last 11,000 years. Sci Rep 8:1-8. https://doi.org/10.1038/s41598-017-18646-7.

Rojido, I. J., S. B. Canavelli, D. Cáceres, and C. B. Anderson. 2021. Perspectivas sobre contribuciones y estados del bosque nativo de actores sociales vinculados a la producción ganadera en el Espinal entrerriano. Ecología Austral 31:87-100. https://doi.org/10.25260/EA.21.31.1.0.1086.

Rykiel, E. 1985. Toward a definition of ecological disturbance. Australian J Ecol 10:361-365. https://doi.org/10.1111/j.1442-9993.1985.tb00897.x.

Salinas, N., Y. Malhi, P. Meir, M. Silman, R. Roman Cuesta, J. Huaman, D. Salinas, V. Huaman, A. Gibaja, M. Mamani, and F. Farfan. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large‐scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189:967-977. https://doi.org/10.1111/j.1469-8137.2010.03521.x.

Schlesinger, W. H., and E. S. Bernhardt. 2013. Biogeochemistry: An analysis of global change. 3rd Edition. Academic Press. Cambridge, Massachusetts, USA. https://doi.org/10.1029/98EO00015.

Scott, D. A., J. Proctor, and J. Thompson. 1992. Ecological studies on a lowland evergreen rain forest on Maracá Island, Roraima, Brazil. II. Litter and nutrient cycling. J Ecol 80:705-717. https://doi.org/10.2307/2260861.

Seibold, S., W. Rammer, T. Hothorn, R. Seidl, M. D. Ulyshen, et al. 2021. The contribution of insects to global forest deadwood decomposition. Nature 597:77-81. https://doi.org/10.1038/s41586-021-03740-8.

Smith, D. L., and L. Johnson. 2004. Vegetation‐mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85:3348-3361. https://doi.org/10.1890/03-0576.

Sodhi, N. S., M. R. C. Posa, T. M. Lee, D. Bickford, L. P. Koh, and B. W. Brook. 2010. The state and conservation of Southeast Asian biodiversity. Biodivers Conserv 19:317-328. https://doi.org/10.1007/s10531-009-9607-5.

Somovilla Lumbreras, D., R. Páez, E. G. Jobbágy, and M. D. Nosetto. 2019. Cambios en el contenido de carbono orgánico del suelo tras el rolado de bosques secos en San Luis (Argentina). Ecología Austral 29:112-119. https://doi.org/10.25260/ea.19.29.1.0.815.

Steinaker, D. F., E. G. Jobbágy, J. P. Martini, D. N. Arroyo, J. L. Pacheco, V. A. Marchesini. 2016. Vegetation composition and structure changes following roller-chopping deforestation in central Argentina woodlands. J Arid Environ 133:19-24. https://doi.org/10.1016/j.jaridenv.2016.05.005.

St Martin, P., and A. U. Mallik. 2021. Soil chemistry drives below ground traits in an alternate successional pathway from forest to heath. Oecologia 195:469-478. https://doi.org/10.1007/s00442-021-04864-4.

Thom, D., and R. Seidl. 2016. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev Camb Philos Soc 91:760-781. https://doi.org/10.1111/brv.12193.

Thom, D., W. Rammer, T. Dirnböck, J. Müller, J. Kobler, et al. 2017. The impacts of climate change and disturbance on spatio‐temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol 54:28-38. https://doi.org/10.1111/1365-2664.12644.

Thompson, I., B. Mackey, S. McNulty, and A. Mosseler. 2009. Forest Resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series 43:1-67.

Thuille, A., N. Buchmann, and E. D. Schulze. 2000. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol 20:849-857. https://doi.org/10.1093/treephys/20.13.849.

Tsiafouli, M. A., E. Thébault, S. P. Sgardelis, P. C. De Ruiter, W. H. Van Der Putten, K. Birkhofer, L. Hemerik, F. T. de Vries, R. D. Bardgett, M. Vincent Brady, L. Bjornlund, H. Bracht Jørgensen, S. Christensen, T. D’ Hertefeldt, S. Hotes, W. H. Gera Hol, J. Frouz, M. Liiri, S. R. Mortimer, H. Setälä, J. Tzanopoulos, K. Uteseny, V. Pižl, J. Stary, V. Wolters, and K. Hedlund. 2015. Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973-985. https://doi.org/10.1111/gcb.12752.

Vaieretti, M. V., A. M. Cingolani, N. Pérez-Harguindeguy, and M. Cabido. 2013. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland. Plant Soil 371:675-691. https://doi.org/10.1007/s11104-013-1831-9.

Vaieretti, M. V., S. Iamamoto, N. Pérez-Harguindeguy, and A. M. Cingolani. 2018. Livestock grazing affects microclimate conditions for decomposition process through changes in vegetation structure in mountain grasslands. Acta Oecol 91:101-107. https://doi.org/10.1016/j.actao.2018.07.002.

Vaieretti, M. V., M. A. Giorgis, A. M. Cingolani, L. Enrico, P. A. Tecco, D. E. Gurvich, M. Cabido, and N. Pérez Harguindeguy. 2021. Variación de los caracteres foliares en comunidades vegetales del centro de la Argentina bajo diferentes condiciones climáticas y de uso del suelo. Ecología Austral 31:372-389. https://doi.org/10.25260/ea.21.31.2.0.1237.

Vanwalleghem, T., and R. K. Meentemeyer. 2009. Predicting forest microclimate in heterogeneous landscapes. Ecosystems 12:1158-1172. https://doi.org/10.1007/s10021-009-9281-1.

Veldkamp, E. 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci Soc Am J 58:175-180. https://doi.org/10.2136/sssaj1994.03615995005800010025x.

Vogt, K. A., C. C. Grier, and D. J. Vogt, D. J. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research 15:303-377. https://doi.org/10.1016/s0065-2504(08)60122-1.

Wang, Q. W., M. Pieristè, C. Liu, T. Kenta, T. M. Robson, and H. Kurokawa. 2021. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol 229:2625. https://doi.org/10.1111/nph.17022.

Weedon, J. T., W. K. Cornwell, J. H. Cornelissen, A. E. Zanne, C. Wirth, and D. A. Coomes. 2009. Global meta‐analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45-56. https://doi.org/10.1111/j.1461-0248.2008.01259.x.

White, P. S., and A. Jentsch. 2001. The search for generality in studies of disturbance and ecosystem dynamics. Pp. 399-450 in Progress in botany. Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1017/s1355770x98280120.

Yanai, R. D., W. S. Currie, and C. L. Goodale. 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6:197-212. https://doi.org/10.1007/s10021-002-0206-5.

Yates, C. J., D. A. Norton, and R. J. Hobbs. 2000. Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south‐western Australia: implications for restoration. Austral Ecol 25:36-47. https://doi.org/10.1046/j.1442-9993.2000.01030.x.

Zellweger, F., P. De Frenne, J. Lenoir, D. Rocchini, and D. Coomes 2019. Advances in microclimate ecology arising from remote sensing. Trends Ecol Evol 34:327-341. https://doi.org/10.1016/j.tree.2018.12.012.

Zhang, D., D. Hui, Y. Luo, and G. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85-93. https://doi.org/10.1093/jpe/rtn002.

Zhao, C., J. Long, H. Liao, C. Zheng, J. Li, et al. 2019. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China. Sci Rep 9:1-10. https://doi.org/10.1038/s41598-018-36886-z.

Zhou, L., L. M. Dai, H. Y. Gu, and L. Zhong. 2007. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J For Res 18:48-54. https://doi.org/10.1007/s11676-007-0009-9.

Zhou, S., O. Butenschoen, S. Barantal, I. T. Handa, M. Makkonen, V. Vos, R. Aerts, M. P. Berg, B. McKie, J. Van Ruijven, S. Hättenschwiler, and S. Scheu. 2020. Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna. J Ecol 108:2283-2297. https://doi.org/10.1111/1365-2745.13452.

How human-induced transitions from forest to treeless ecosystems affect litter decomposition

Descargas

Publicado

2022-05-17

Cómo citar

Pérez Harguindeguy, N., Cingolani, A. M., Enrico, L., Vaieretti, M. V., Giorgis, M. A., Moreno, M. L., Falczuk, V., Gurvich, D. E., Bertone, G. A., Díaz, S. M., & Cabido, M. R. (2022). Efecto de la transición antropogénica desde ecosistemas forestales a ecosistemas sin árboles sobre la descomposición de broza. Ecología Austral, 32(2), 716–733. https://doi.org/10.25260/EA.22.32.2.1.1887