Las arañas saltadoras (Araneae: Salticidae) como indicadoras del estado de conservación de los hábitats en el Chaco Oriental

Autores/as

  • María F. Nadal Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología de los Artrópodos, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste. Corrientes, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1987

Palabras clave:

valor indicador, follaje, pastizal, hojarasca, juveniles

Resumen

Las arañas de la familia Salticidae pueden ser indicadoras valiosas de diversas condiciones ambientales porque se distribuyen en casi todos los continentes y se encuentran en una gran variedad de hábitats y en todas las estaciones climáticas. Se evaluó si las especies de Salticidae funcionan como indicadores del estado de conservación de los hábitats y si el uso de los datos de adultos+juveniles o solo adultos arroja resultados diferentes. Las arañas fueron recolectadas en dos parques naturales y dos áreas semi-naturales ubicadas entre ambos parques en un área del Chaco Oriental, Argentina. Las muestras se tomaron de tres tipos de hábitats: follaje, hojarasca y pastizal. El análisis de especies indicadoras se realizó con el índice valor indicador (IndVal). Un valor alto de IndVal para una especie en un hábitat (e.g., pastizales semi-naturales) indica que es específica (relativamente abundante) y fiel (distribuida uniformemente) de ese hábitat. Las especies que presentaron valores de IndVal >0.45 y >0.70 fueron clasificadas como detectoras e indicadoras, respectivamente. Las especies indicadoras son muy características de un grupo (exclusivas o casi exclusivas), mientras que las especies detectoras tienen preferencia por un grupo, pero no son exclusivas de él. Philira micans resultó detectora para el follaje seminatural; Semiopyla viperina, para la hojarasca natural y Maeota dorsalis, para los pastizales naturales. El uso de datos de adultos+juveniles proporcionó más información sobre la cantidad de especies IndVal-significativas; las tres especies detectoras mencionadas se detectaron exclusivamente a partir de este conjunto de datos. Este estudio demuestra que las arañas Salticidae en el área de estudio son sensibles al estado de conservación de los hábitats analizados ya que se registraron especies detectoras. Además, este trabajo demuestra que el conjunto de datos de adultos+juveniles mejora la detección de especies sensibles a cambios.

Citas

Aisen, S., V. Werenkraut, M. E. G. Márquez, M. J. Ramírez, and A. Ruggiero. 2017. Environmental heterogeneity, not distance, structures montane epigaeic spider assemblages in north-western Patagonia (Argentina). Journal of Insect Conservation 21(5):951-962. https://doi.org/10.1007/s10841-017-0034-8.

Alcalde, A. S., N. Politi, S. Rodríguez-Artigas, J. A. Corronca, and L.O. Rivera. 2021. Ground-dwelling spider families and forest structure variables for monitoring ecologically sustainable logging operations. Environmental Conservation 48(3):208-216. https://doi.org/10.1017/S0376892921000230.

do Amaral Nogueira, A., and R. Pinto-da-Rocha. 2016. The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic Forest fragmented landscape. The Journal of Arachnology 44(1):36-45. https://doi.org/10.1636/P15-19.1.

Argañaraz, C. I., G. D. Rubio, and R. M. Gleiser. 2017. Jumping spider (Araneae: Salticidae) diversity in the understory of the Argentinian Atlantic Forest. Caldasia 39(1):157-168. https://doi.org/10.15446/caldasia.v39n1.60527.

Argañaraz, C. I., G. D. Rubio, and R. M. Gleiser. 2018. Spider communities in urban green patches and their relation to local and landscape traits. Biodiversity and Conservation 27(4):981-1009. https://doi.org/10.1007/s10531-017-1476-8.

Argañaraz, C. I., G. D. Rubio, M. Rubio, and F. Castellarini. 2020a. Ground-dwelling spiders in agroecosystems of the Dry Chaco: A rapid assessment of community shifts in response to land use changes. Biodiversity 21(3):125-135. https://doi.org/10.1080/14888386.2020.1831605.

Argañaraz, C. I., G. J. M. Pastur, M. J. Ramírez, C. J. Grismado, A. P. Blazina, and M. V. Lencinas. 2020b. Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems. Forest Ecology and Management 474:118375. https://doi.org/10.1016/j.foreco.2020.118375.

Baldissera, R., S. O. de Quadros, G. Galeti, E. N. L. Rodrigues, L. M. Lazzarotto, and A. D. de Oliveira. 2020. Spider assemblage structure and functional diversity patterns in clear-cut, logged, and undisturbed areas in a large Atlantic Forest remnant. Canadian Journal of Forest Research 50(7):608-614. https://doi.org/10.1139/cjfr-2019-0302.

Bangert, R. K., and C. N. Slobodchikoff. 2006. Conservation of prairie dog ecosystem engineering may support arthropod beta and gamma diversity. Journal of Arid Environments 67(1):100-115. https://doi.org/10.1016/j.jaridenv.2006.01.015.

Barreto, M. Á., V. Romagnoli, M. A. Benítez, S. López, G. A. Ebel, et al. 2019. Actualización del plan estratégico territorial de la provincia del Chaco: PET Chaco 2018-2025.

Bonte, D., L. Baert, and J. P. Maelfait. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium). The Journal of Arachnology 30(2):331-343. https://doi.org/10.1636/0161-8202(2002)030[0331:SASASI]2.0.CO;2.

Cabrera, A. L. 1971. Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14(1-2):1-42.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Editorial Acme, Buenos Aires, Argentina.

Campuzano, E. F., and J. R. Padilla-Ramírez. 2021. Spatial and seasonal patterns of ground-dwelling spider assemblages belonging to the retrolateral tibial apophysis clade (Araneae: Araneomorphae) in two remnants of pine-oak forest from Mexico. Studies on Neotropical Fauna and Environment 56(3):220-233. https://doi.org/10.1080/01650521.2020.1806008.

Carvalho, J. C., P. Cardoso, L. C. Crespo, S. Henriques, R. Carvalho, et al. 2011. Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity. Biodiversity and conservation 20(4):873-894. https://doi.org/10.1007/s10531-011-0001-8.

Cattin, M. F., G. Blandenier, C. Banašek-Richter, and L. F. Bersier. 2003. The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biological Conservation 113(2):179-188. https://doi.org/10.1016/S0006-3207(02)00297-5.

Chebez, J. C. 2005. Guía de las Reservas Naturales de la Argentina. First edition. Albatros, Buenos Aires, Buenos Aires, Argentina.

Cristofoli, S., G. Mahy, R. Kekenbosch, and K. Lambeets. 2010. Spider communities as evaluation tools for wet heathland restoration. Ecological Indicators 10(3):773-780. https://doi.org/10.1016/j.ecolind.2009.11.013.

De Caceres, M., and P. Legendre. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566-3574. https://doi.org/10.1890/08-1823.1.

Domènech, M., O. S. Wangensteen, A. Enguídanos, J. Malumbres-Olarte, and M. Arnedo. 2022. For all audiences: Incorporating immature stages into standardised inventories of mega-diverse groups has a major impact on our understanding of biodiversity patterns. Molecular Ecology Resources 00:1-14. https://doi.org/10.22541/au.162936514.40253306/v1.

Dufek, M. I., E. B. Oscherov, M. P. Damborsky, and P. R. Mulieri. 2019. Calliphoridae (Diptera) in human-transformed and wild habitats: diversity and seasonal fluctuations in the humid chaco ecoregion of South America. Journal of Medical Entomology 56(3):725-736. https://doi.org/10.1093/jme/tjy234.

Dufek, M. I., D. D. Larrea, M. P. Damborsky, and P. R. Mulieri. 2020. The effect of anthropization on Sarcophagidae (Diptera: Calyptratae) community structure: an assessment on different types of habitats in the Humid Chaco ecoregion of Argentina. Journal of Medical Entomology 57(5):1468-1479. https://doi.org/10.1093/jme/tjaa071.

Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs 67(3):345-366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.

Elie, F., L. Vincenot, T. Berthe, E. Quibel, B. Zeller, et al. 2018. Soil fauna as bioindicators of organic matter export in temperate forests. Forest Ecology and Management 429:549-557. https://doi.org/10.1016/j.foreco.2018.07.053.

Fernández, P. D., M. Baumann, G. Baldi, R. N. Banegas, S. Bravo, et al. 2020. Grasslands and open savannas of the dry Chaco. Pp. 562-576 in M. I. Goldstein and D. A. DellaSala (eds.). Encyclopedia of the World’s Biomes. 1st edition. Elsevier, Amsterdam, North Holland, Netherlands. https://doi.org/10.1016/B978-0-12-409548-9.12094-9.

Ghione, S., M. Simó, A. Aisenberg, and F. G. Costa. 2013. Allocosa brasiliensis (Araneae, Lycosidae) as a bioindicator of coastal sand dunes in Uruguay. Arachnology 16(3):94-98. https://doi.org/10.13156/100.016.0304.

Gómez, J. E., J. Lohmiller, and A. Joern. 2016. Importance of vegetation structure to the assembly of an aerial web-building spider community in North American open grassland. Journal of Arachnology 44(1):28-35. https://doi.org/10.1636/P14-58.1.

Grau, H. R., R. Torres, N. I. Gasparri, P. G. Blendinger, S. Marinaro, et al. 2015. Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. Journal of Arid Environments 123:40-46. https://doi.org/10.1016/j.jaridenv.2014.12.006.

Gurdebeke, S., D. De Bakker, N. Vanlanduyt, and J. P. Maelfait. 2003. Plans for a large regional forest in eastern Flanders (Belgium): assessment of spider diversity and community structure in the current forest remnants. Biodiversity and Conservation 12(9):1883-1900. https://doi.org/10.1023/A:1024162910018.

Hore, U., and V. P. Uniyal. 2008. Use of spiders (Araneae) as indicator for monitoring of habitat conditions in Tarai conservation area, India. Indian Forester 134(10):1371-1380.

Horváth, R., T. Magura, and C. Szinetár. 2001. Effects of immission load on spiders living on black pine. Biodiversity and Conservation 10(9):1531-1542. https://doi.org/10.1023/A:1011819427941.

Jiménez‐Valverde, A., and J. M. Lobo. 2006. The ghost of unbalanced species distribution data in geographical model predictions. Diversity and Distributions 12(5):521-524. https://doi.org/10.1111/j.1366-9516.2006.00267.x.

Kaltsas, D., E. Panayiotou, M. Chatzaki, and M. Mylonas. 2014. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. European Journal of Entomology 111(1):59-67. https://doi.org/10.14411/eje.2014.007.

Laborda, Á., D. Hagopián, S. Teijón, J. Ginella, J. C. Guerrero, et al. 2020. The spider assemblage in a dendrofloristic hotspot from eastern Uruguay. Boletín de la Sociedad Zoológica del Uruguay 29(2):73-85. https://doi.org/10.26462/29.2.4.

Leote, P., R. L. Cajaiba, J. A. Cabral, A. D. Brescovit, and M. Santos. 2020. Are data-mining techniques useful for selecting ecological indicators in biodiverse regions? Bridges between market basket analysis and indicator value analysis from a case study in the neotropics. Ecological Indicators 109:105833. https://doi.org/10.1016/j.ecolind.2019.105833.

Lindenmayer, D. 2020. Improving restoration programs through greater connection with ecological theory and better monitoring. Frontiers in Ecology and Evolution 8:1-8. https://doi.org/10.3389/fevo.2020.00050.

Malumbres-Olarte, J., B. I. Barratt, C. J. Vink, A. M. Paterson, R. H. Cruickshank, et al. 2013. Habitat specificity, dispersal and burning season: recovery indicators in New Zealand native grassland communities. Biological conservation 160:140-149. https://doi.org/10.1016/j.biocon.2013.01.004.

Martínez, F. J., G. H. Cheli, C. J. Grismado, and A. J. Bisigato. 2022. Ground-Dwelling Arachnids and Fire Disturbance: A Case Study in Northeastern Patagonia (Argentina). Fire 5(91):1-12. https://doi.org/10.3390/fire5040091.

McGeoch, M. A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological reviews 73(2):181-201. https://doi.org/10.1017/S000632319700515X.

McGeoch, M. A., B. J. Van Rensburg, and A. Botes. 2002. The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of applied ecology 39(4):661-672. https://doi.org/10.1046/j.1365-2664.2002.00743.x.

Metzner, H. 2022. Jumping spiders (Arachnida: Araneae: Salticidae) of the world. URL: jumping-spiders.com.

Morello, J. H., and A. F. Rodríguez. 2009. El Chaco sin bosques: la pampa o el desierto del futuro. First edition. Orientación Gráfica Editora, Buenos Aires, Buenos Aires, Argentina.

Morello, J., S. D. Matteucci, A. F. Rodríguez, M. E. Silva, P. Mesopotámica, et al. 2012. Ecorregiones y complejos Ecosistémicos de Argentina. Orientación Gráfica Editora, Buenos Aires, Argentina.

Moreno, C. E., G. Sánchez-Rojas, E. Pineda, and F. Escobar. 2007. Shortcuts for biodiversity evaluation: a review of terminology and recommendations for the use of target groups, bioindicators and surrogates. International Journal of Environment and Health 1(1):71-86. https://doi.org/10.1504/IJENVH.2007.012225.

Morrone, J. J. 2014. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782(1):1-110. https://doi.org/10.11646/zootaxa.3782.1.1.

Nadal, M. F., H. C. Achitte-Schmutzler, I. Zanone, P. Y. González, and G. Avalos. 2018. Diversidad estacional de arañas en una reserva natural del Espinal en Corrientes, Argentina. Caldasia 40(1):129-143. https://doi.org/10.15446/caldasia.v40n1.67362.

Nahmani, J., P. Lavelle, and J. P. Rossi. 2006. Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil biology and biochemistry 38(2):385-396. https://doi.org/10.1016/j.soilbio.2005.04.037.

Nuria, R., M. Jérôme, C. Léonide, R. Christine, H. Gérard, et al. 2011. IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities. Soil Biology and Biochemistry 43(10):2032-2045. https://doi.org/10.1016/j.soilbio.2011.05.019.

Pearce, J. L., and L. A. Venier. 2006. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecological indicators 6(4):780-793. https://doi.org/10.1016/j.ecolind.2005.03.005.

Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences 11(5):1633-1644. https://doi.org/10.5194/hess-11-1633-2007.

Podgaiski, L. R., F. Joner, S. Lavorel, M. Moretti, S. Ibanez, et al. 2013. Spider trait assembly patterns and resilience under fire-induced vegetation change in South Brazilian grasslands. PloS one 8(3):e60207. https://doi.org/10.1371/journal.pone.0060207.

Prieto-Benítez, S., and M. Méndez. 2011. Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis. Biological Conservation 144(2):683-691. https://doi.org/10.1016/j.biocon.2010.11.024.

Pugh, P. J. A. 2004. Biogeography of spiders (Araneae: Arachnida) on the islands of the Southern Ocean. Journal of Natural History 38(12):1461-1487. https://doi.org/10.1080/0022293031000155403.

QGIS Development Team. 2022. QGIS Geographic Information System. Open Source Geospatial Foundation Project. URL: qgis.org.

Quijano-Cuervo, L., J. Rangel-Acosta, N. Martínez-Hernández, and A. Sabogal-González. 2019. Estratificación vertical de arañas tejedoras (Araneae) en fragmentos de bosque seco tropical del Caribe colombiano. Revista de Biología Tropical 67(1):224-242. http://doi.org/10.15517/rbt.v67i1.33168.

R Core Team 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

van Rensburg, P. D. J., S. J. Siebert, T. Masehela, S. Ellis, and J. Van den Berg. 2020. Diversity patterns of plants and arthropods in soybean agro-ecosystems in the Grassland Biome of South Africa. Biodiversitas Journal of Biological Diversity 21(12):5559-5570. https://doi.org/10.13057/biodiv/d211201.

Rodríguez-Artigas, S. M., R. Ballester, and J. A. Corronca. 2016. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands. PeerJ 4:e1946. https://doi.org/10.7717/peerj.1946.

Rousseau, L., S. J. Fonte, O. Téllez, R. Van der Hoek, and P. Lavelle. 2013. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators 27:71-82. https://doi.org/10.1016/j.ecolind.2012.11.020.

Royauté, R., and C. M. Buddle. 2012. Colonization dynamics of agroecosystem spider assemblages after snow-melt in Quebec (Canada). The Journal of Arachnology 40(1):48-58. https://doi.org/10.1636/P11-16.1.

SAS.Planet Development Team. 2019. SAS.Planet (version 190707) [software]. URL: sasgis.org.

Topa, E., A. Kosewska, M. Nietupski, L. Trębicki, L. Nicewicz, et al. 2021. Non-Inversion Tillage as a Chance to Increase the Biodiversity of Ground-Dwelling Spiders in Agroecosystems: Preliminary Results. Agronomy 11(11):2150. https://doi.org/10.3390/agronomy11112150.

Torma, A., P. Császár, M. Bozsó, B. Deák, O. Valkó, et al. 2019. Species and functional diversity of arthropod assemblages (Araneae, Carabidae, Heteroptera and Orthoptera) in grazed and mown salt grasslands. Agriculture, Ecosystems and Environment 273:70-79. https://doi.org/10.1016/j.agee.2018.12.004.

Trivellone, V., A. Pedretti, M. Caprani, L. Pollini, M. Jermini, et al. 2013. Ragni e carabidi dei vigneti del Cantone Ticino (Svizzera). Bollettino Della Società Ticinese Di Scienze Naturali 101:63-72.

Uetz, G. W. 1979. The influence of variation in litter habitats on spider communities. Oecologia 40(1):29-42. https://doi.org/10.1007/BF00388808.

Wiens, J. A., and R. J. Hobbs. 2015. Integrating conservation and restoration in a changing world. BioScience 65(3):302-312. https://doi.org/10.1093/biosci/biu235.

Word Spider Catalog. 2022. The world spider catalog. Natural History Museum Bern. URL: wsc.nmbe.ch.

Yekwayo, I., J. S. Pryke, R. Gaigher, and M. J. Samways. 2019. Wandering spiders recover more slowly than web-building spiders after fire. Oecologia 191(1):231-240. https://doi.org/10.1007/s00442-019-04471-4.

Las arañas saltadoras (Araneae: Salticidae) como indicadoras del estado de conservación de los hábitats en el Chaco Oriental

Descargas

Archivos adicionales

Publicado

2022-11-22

Cómo citar

Nadal, M. F. (2022). Las arañas saltadoras (Araneae: Salticidae) como indicadoras del estado de conservación de los hábitats en el Chaco Oriental. Ecología Austral, 32(3), 1120–1132. https://doi.org/10.25260/EA.22.32.3.0.1987