Producción de restos vegetales y descomposición de hojarasca foliar bajo distintas intensidades de corta en fajas en matorrales

Autores/as

  • Diego N. Nabaes Jodar Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. San Carlos de Bariloche, Río Negro, Argentina
  • Ivana M. García Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. San Carlos de Bariloche, Río Negro, Argentina
  • Matías G. Goldenberg Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. San Carlos de Bariloche, Río Negro, Argentina
  • Lucas A. Garibaldi Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro. Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. San Carlos de Bariloche, Río Negro, Argentina

DOI:

https://doi.org/10.25260/EA.23.33.1.0.2021

Palabras clave:

matorrales nativos, manejo forestal, funciones ecosistémicas

Resumen

La extracción de biomasa en bosques nativos puede inducir cambios en su funcionamiento. Los escasos estudios sobre estos cambios determinan un vacío en el conocimiento. En este trabajo evaluamos la respuesta de la producción y la descomposición de restos vegetales ante intensidades crecientes de corta de biomasa en fajas en matorrales nativos. Realizamos un experimento replicado en tres sitios: ladera con exposición sur (FS), ladera con exposición norte (FN) y fondo de valle (R), con cuatro intensidades de corta en fajas (0, 30, 50 y 70% del área). Para estimar la descomposición usamos bolsitas rellenas con hojas de ñire (Nothofagus antarctica), y para la producción, colectores de caída de restos vegetales. Además, medimos la altura y la cobertura vegetal. En los tres sitios observamos el mismo patrón temporal de descomposición, con un marcado descenso de materia orgánica remanente en el período más frío del año. Los efectos de la corta dependieron del sitio: en FS aumentó la producción de restos vegetales, pero no tuvo efecto sobre la descomposición; en cambio, en FN y R, redujo la producción y se observó un efecto curvilíneo con mayor descomposición a intensidades intermedias de corta. La cobertura aérea se correlacionó positivamente con la producción, y esta negativamente con la descomposición. Nuestros resultados sugieren que en matorrales con mayor cobertura vegetal, la corta de biomasa podría estimular la producción de restos vegetales sin afectar los procesos de descomposición. En cambio, los matorrales menos productivos y con menor cobertura vegetal serían más sensibles a las intervenciones forestales.

Citas

Arias Sepúlveda, J. E., and V. Chillo. 2017. Cambios en la diversidad funcional del sotobosque y la tasa de descomposición frente a diferentes intensidades de uso silvopastoril en el noroeste de la Patagonia, Argentina. Ecología Austral 27:029-038. https://doi.org/10.25260/EA.17.27.1.0.297.

Aussenac, G. 2000. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Annals of Forest Science 57:287-301. https://doi.org/10.1051/forest:2000119.

Austin, A. T., and L. Vivanco. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555-558. https://doi.org/10.1038/nature05038.

Bahamonde, H. A., P. L. Peri, R. Álvarez, A. Barneix, A. Moretto, et al. 2012. Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agroforestry Systems 84:345-360. https://doi.org/10.1007/s10457-012-9479-7.

Bahamonde, H. A., P. L. Peri, G. Martínez Pastur, and L. Monelos. 2015. Litterfall and nutrients return in Nothofagus antarctica forests growing in a site quality gradient with different management uses in Southern Patagonia. European Journal of Forest Research 134:113-124. https://doi.org/10.1007/s10342-014-0837-z.

Bahru, T., and Y. Ding. 2020. Effect of stand density, canopy leaf area index and growth variables on Dendrocalamus brandisii (Munro) Kurz litter production at Simao District of Yunnan Province, southwestern China. Global Ecology and Conservation 23:e01051. https://doi.org/10.1016/j.gecco.2020.e01051.

Barton, K. 2019. Package MuMIn. URL: cran.r-project.org/web/packages/MuMIn/index.html.

Blanco, J. A., J. B. Imbert, and F. J. Castillo. 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. Forest Ecology and Management 237:342-352. https://doi.org/10.1016/j.foreco.2006.09.057.

Blanco, J. A., J. B. Imbert, and F. J. Castillo. 2011. Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106:397-414. https://doi.org/10.1007/s10533-010-9518-2.

Bradford, M. A., B. Berg, D. S. Maynard, W. R. Wieder, and S. A. Wood. 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104:229-238. https://doi.org/10.1111/1365-2745.12507.

Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones, and J. E. Newington. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317-323. https://doi.org/10.1034/j.1600-0706.2002.990212.x.

Bravo-Oviedo, A., R. Ruiz-Peinado, R. Onrubia, and M. del Río. 2017. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. Forest Ecology and Management 391:309-320. https://doi.org/10.1016/j.foreco.2017.02.032.

Caldentey, J., M. Ibarra, and J. Hernández. 2001. Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. Forest Ecology and Management 148:145-157. https://doi.org/10.1016/S0378-1127(00)00532-6.

Chauchard, L., M. Frugoni, and C. Novack. 2015. Manual de Buenas Prácticas para el Manejo de las Plantaciones Forestales en la Región de la Patagonia Andina. Buenos Aires.

CIEFAP-MAyDS. 2016. Actualización de la Clasificación de Tipos Forestales y Cobertura del Suelo de la Región Bosque Andino Patagónico. Centro de Investigación y Extensión Forestal Andino Patagónico, AR - Ministerio de Ambiente y Desarrollo Sustentable, AR. Informe final.

Coulin, C., M. A. Aizen, and L. A. Garibaldi. 2019. Contrasting responses of plants and pollinators to woodland disturbance. Austral Ecology 44:1040-1051. https://doi.org/10.1111/aec.12771.

de Morais, T. M. O., E. Berenguer, J. Barlow, F. França, G. D. Lennox, et al. 2021. Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015-2016. Forest Ecology and Management 496:119441. https://doi.org/10.1016/j.foreco.2021.119441.

De Paz, M., M. E. Gobbi, and E. Raffaele. 2013. Mantillo de las especies leñosas de matorrales del NO de la Patagonia: abundancia, composición, estructura y heterogeneidad. Boletín de la Sociedad Argentina de Botánica 48:525-541. https://doi.org/10.31055/1851.2372.v48.n3-4.7607.

FAO. 2012. State of the World’s Forests. Food and Agriculture Organization of the United Nations.

Franklin, J. F., D. F. Berg, D. Thornburg, and J. C. Tappeiner. 1997. Alternative silvicultural approaches to timber harvesting: variable retention harvest systems. Pp. 111-139 en K. A. Kohm and J. F. Franklin (eds.). Creating a forestry for the 21st century: The Science of Ecosystem Management. Island Press, Washington, DC.

García-Palacios, P., F. T. Maestre, J. Kattge, and D. H. Wall. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16:1045-1053. https://doi.org/10.1111/ele.12137.

Gliksman, D., A. Rey, R. Seligmann, R. Dumbur, O. Sperling, et al. 2017. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Global Change Biology 23:1564-1574. https://doi.org/10.1111/gcb.13465.

Goldenberg, M. G., J. H. Gowda, C. Casas, and L. A. Garibaldi. 2018. Efecto de la tasa de descuento sobre la priorización de alternativas de manejo del matorral Norpatagónico argentino. Bosque 39:217-226. https://doi.org/10.4067/S0717-92002018000200217.

Goldenberg, M. G., F. J. Oddi, M. M. Amoroso, and L. A. Garibaldi. 2020a. Effects of harvesting intensity and site conditions on biomass production of northern Patagonia shrublands. European Journal of Forest Research 139:881-891. https://doi.org/10.1007/s10342-020-01292-6.

Goldenberg, M. G., F. J. Oddi, J. H. Gowda, and L. A. Garibaldi. 2020b. Effects of firewood harvesting intensity on biodiversity and ecosystem services in shrublands of northern Patagonia. Forest Ecosystems 7:47. https://doi.org/10.1186/s40663-020-00255-y.

Goldenberg, M. G., F. J. Oddi, J. H. Gowda, and L. A. Garibaldi. 2021a. Shrubland Management in Northwestern Patagonia: An Evaluation of Its Short-Term Effects on Multiple Ecosystem Services. Pp. 99-114 en P. Peri, G. Martínez-Pastur and L. Nahuelhual (eds.). Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment. Springer, Suiza. https://doi.org/10.1007/978-3-030-69166-0_5.

Goldenberg, M. G., M. E. Nacif, F. J. Oddi, and L. A. Garibaldi. 2021b. Early response of Nothofagus antarctica forests to thinning intensity in northern Patagonia. Canadian Journal of Forest Research 51:3. https://doi.org/10.1139/cjfr-2020-0187.

Gustafsson, L., S. C. Baker, J. Bauhus, W. J. Beese, A. Brodie, et al. 2012. Retention forestry to maintain multifunctional forests: a world perspective. BioScience 62:633-645. https://doi.org/10.1525/bio.2012.62.7.6.

Harmon, M. E., and K. Lajtha. 1999. Analysis of Detritus and Organic Horizons for Mineral and Organic Constituents. Pp. 143-165 en G. P. Robertson, D. C. Coleman, C. S. Bledsoe and P. Sollins (eds). Standard Soil Methods for Long-term Ecological Research. Oxford University Press.

Harrison, X. A., L. Donaldson, M. E. Correa-Cano, J. Evans, D. N. Fisher, et al. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794. https://doi.org/10.7717/peerj.4794.

Hautier, Y., D. Tilman, F. Isbell, E. W. Seabloom, E. T. Borer, et al. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348:336-340. https://doi.org/10.1126/science.aaa1788.

Karberg, N. J., N. A. Scott, and C. P. Giardina. 2008. Methods for estimating litter decomposition. Pages 103-111 in C. M. Hoover. Field measurements for forest carbon monitoring. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-8506-2_8.

Kunhamu, T. K., B. M. Kumar, and S. Viswanath. 2009. Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India? Canadian Journal of Forest Research 39:792-801. https://doi.org/10.1139/X09-008.

Kuuluvainen, T. 2009. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. AMBIO: A Journal of the Human Environment 38:309-315. https://doi.org/10.1579/08-A-490.1.

Lado-Monserrat, L., A. Lidón, and I. Bautista. 2016. Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. European Journal of Forest Research 135:203-214. https://doi.org/10.1007/s10342-015-0893-z.

Nacif, M. E., T. Kitzberger, and L. A. Garibaldi. 2020. Positive outcomes between herbivore diversity and tree survival: Responses to management intensity in a Patagonian forest. Forest Ecology and Management 458:117738. https://doi.org/10.1016/j.foreco.2019.117738.

Newbold, T., L. N. Hudson, A. P. Arnell, S. Contu, et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288-291. https://doi.org/10.1126/science.aaf2201.

Oddi, F. J., M. G. Goldenberg, M. E. Nacif, K. Heinemann, and L. A. Garibaldi. 2021. Supervivencia y crecimiento de plantines de ciprés de la cordillera durante siete años en dos sitios contrastantes de Patagonia norte. Ecología Austral. 31:204-215. https://doi.org/10.25260/EA.21.31.2.0.1239.

Prescott, C. E. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133-149. https://doi.org/10.1007/s10533-010-9439-0.

Purahong, W., D. Kapturska, M. J. Pecyna, E. Schulz, et al. 2014. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. PLoS ONE 9:e93700. https://doi.org/10.1371/journal.pone.0093700.

R Core Team. 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Reque, J. A., M. Sarasola, J. Gyenge, and M. E. Fernández. 2007. Caracterización silvícola de ñirantales del norte de la Patagonia para la gestión forestal sostenible. Bosque 28:33-45. https://doi.org/10.4067/S0717-92002007000100006.

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, et al. 2000. Global Biodiversity Scenarios for the Year 2100. Science 287:1770-1774. https://doi.org/10.1126/science.287.5459.1770.

Soler, R. M., S. Schindler, M. V. Lencinas, P. L. Peri, and G. M. Pastur. 2016. Why biodiversity increases after variable retention harvesting: a meta-analysis for southern Patagonian forests. Forest Ecology and Management 369:161-169. https://doi.org/10.1016/j.foreco.2016.02.036.

Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkeley, United States.

Taylor, B. R., and D. Parkinson. 1988. Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biology and Biochemistry 20:657-665. https://doi.org/10.1016/0038-0717(88)90150-2.

Weng, S. H., S. R. Kuo, B. T. Guan, T. Y. Chang, H. W. Hsu, et al. 2007. Microclimatic responses to different thinning intensities in a Japanese cedar plantation of northern Taiwan. Forest Ecology and Management 241:91-100. https://doi.org/10.1016/j.foreco.2006.12.027.

Zhang, W., Y. Wang, J. Xiao, and L. Lyu. 2022. Species-specific coupling of tree-ring width and litter production in a temperate mixed forest. Forest Ecology and Management 504:119831. https://doi.org/10.1016/j.foreco.2021.119831.

Zhu, J., W. Yang, and X. He. 2013. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient. PloS ONE 8:e62073. https://doi.org/10.1371/journal.pone.0062073.

Producción de restos vegetales y descomposición de hojarasca foliar bajo distintas intensidades de corta en fajas en matorrales

Descargas

Publicado

2023-02-12

Cómo citar

Nabaes Jodar, D. N., García, I. M., Goldenberg, M. G., & Garibaldi, L. A. (2023). Producción de restos vegetales y descomposición de hojarasca foliar bajo distintas intensidades de corta en fajas en matorrales. Ecología Austral, 33(1), 178–187. https://doi.org/10.25260/EA.23.33.1.0.2021

Número

Sección

Comunicaciones breves