La deposición de cenizas volcánicas modula la descomposición de hojarasca en bosques de Nothofagus dombeyi del norte de Patagonia

Autores/as

  • María V. Piazza Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina.
  • Thomas Kitzberger Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET y Universidad Nacional del Comahue, San Carlos de Bariloche.
  • Enrique J. Chaneton Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.18.28.1.0.561

Resumen

Los disturbios generados por erupciones volcánicas son parte de la dinámica natural de los ecosistemas. La formación de suelo y el reciclado de nutrientes dependen de la descomposición tanto de la materia orgánica enterrada bajo las cenizas, como de la broza vegetal aportada luego del disturbio. Este trabajo examinó la descomposición de hojarasca en bosques de coihue (Nothofagus dombeyi) afectados por la deposición de cenizas emitidas en 2011 por el complejo Volcán Puyehue-Cordón Caulle en la Patagonia. El estudio incluyó dos sitios a diferentes distancias del volcán, con distinta cantidad de cenizas y precipitación anual (1600–1900 mm/año). En cada sitio se marcaron dos parcelas, una con presencia y otra con ausencia de pastoreo de vacunos (>50 años). En cada parcela se determinó la pérdida de masa de hojarasca de coihue luego de un año de incubación, en tres posiciones (n=8 bloques/parcela): sobre suelo bajo cenizas, sobre suelo sin cenizas y sobre las cenizas. La hojarasca bajo cenizas se descompuso un 74% más rápido en el sitio más húmedo que en el más seco. La descomposición fue más lenta sobre la capa de cenizas que sobre el suelo orgánico, y ese efecto fue más evidente en el sitio más cercano al volcán, que en el más alejado (19% vs. 9%). La descomposición sobre el suelo fue equivalente en los tratamientos con y sin la capa superficial de cenizas. La descomposición fue menor en parcelas con vs. sin pastoreo, pero la influencia de pastoreo no modificó las diferencias de descomposición entre posiciones sobre cenizas vs. sobre el suelo. Los resultados muestran que la comunidad de descomponedores se mantiene activa en suelos de bosques con deposición de cenizas, lo que contribuiría a mantener el suministro de nutrientes para la vegetación luego de la erupción volcánica.

https://doi.org/10.25260/EA.18.28.1.0.561

Citas

Antos, J. A., and D. B. Zobel. 2005. Plant responses in forests of the tephra-fall zone. Pages 47-58 in V. H. Dale, F. J. Swanson, and C. M. Crisafulli, editors.Ecological Responses to the 1980 Eruption of Mount St. Helens. Springer New York, New York.

Bardgett, R. D., and D. A. Wardle. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258-2268.

Barros, V. R., V. H. Cordon, C. L. Moyano, R. J. Méndez, J. C. Forqera, and O. Pizzio. 1983. Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. CONICET, Buenos Aires.

Berenstecher, P., D. Gangi, A. González-Arzac, M. L. Martínez, E. J. Chaves, E. A. Mondino, and A. T. Austin. 2016. Litter microbial and soil faunal communities stimulated in the wake of a volcanic eruption in a semi-arid woodland in Patagonia, Argentina. Functional Ecology.

Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones, and J. E. Newington. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317-323.

Castellano, M. J., K. E. Mueller, D. C. Olk, J. E. Sawyer, and J. Six. 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology 21:3200-3209.

Chaneton, E. J., N. Mazía, L. A. Garibaldi, J. Chaij, and T. Kitzberger. 2014. Impact of volcanic ash deposition on foliar productivity and insect herbivory in northern Patagonia deciduous forests. Ecología Austral 24:64-74.

Chapin III, F. S., P. A. Matson, and P. M. Vitousek. 2002. Principles of Terrestrial Ecosystem Ecology. Springer, New York.

Cotrufo, M. F., J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience 8:776-779.

Cremona, V., J. Ferrari, and S. López. 2011. Las cenizas volcánicas y los suelos de la región. Revista Presencia:8-11.

Dahlgren, R. A., M. Saigusa, and F. C. Ugolini. 2004. The Nature, Properties and Management of Volcanic Soils. Advances in Agronomy 82:113-182.

Dale, V. H., C. M. Crisafulli, and F. J. Swanson. 2005. 25 years of ecological change at Mount St. Helens. Science (New York, N.Y.) 308:961-2.

Decker, K. L. M., and R. E. J. Boerner. 2006. Mass loss and nutrient release from decomposing evergreen and deciduous Nothofagus litters from the Chilean Andes. Austral Ecology 31:1005-1015.

Edmonds, R. L., and H. E. Erickson. 1994. Influence of Mount St. Helens ash on litter decomposition. I. Pacific silver fir needle decomposition in the ash-fall zone. Canadian Journal of Forest Research 24:826-831.

Elizalde, L. 2014. Volcanism and arthropods: a review. Ecología Austral 24:3-16.

Erickson, H. E., and R. L. Edmonds. 1994. Influence of Mount St. Helens ash on litter decomposition. II. Experimental studies with Douglas-fir needles. Canadian Journal of Forest Research 24:832-838.

Gaitán, J., J. Ayesa, F. Umaña, F. Raffo, and D. Bran. 2011. Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. S. C. de Bariloche, Argentina.

Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall, and S. Hättenschwiler. 2010. Diversity meets decomposition. Trends in Ecology and Evolution 25:372-380.

González, R., D. Dec, S. Valle, F. Zúñiga, and J. Dörner. 2015. Efecto de cenizas volcánicas del Cordón Caulle sobre parámetros de calidad física en suelos agrícolas del sur de Chile. Agro Sur 43:53-63.

Gutschick, V. P., and H. BassiriRad. 2003. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytologist 160:21-42.

Hatton, P. J., C. Castanha, M. S. Torn, and J. A. Bird. 2015. Litter type control on soil C and N stabilization dynamics in a temperate forest. Global Change Biology 21:1358-1367.

Hopkins, D. W., L. Badalucco, L. C. English, S. M. Meli, J. A. Chudek, and A. Ioppolo. 2007. Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biology and Fertility of Soils 43:461-469.

Iglesias, A., A. E. Artabe, and E. M. Morel. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnean Society 103:409-422.

Kardol, P., and D. A. Wardle. 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology and Evolution 25:670-679.

Lefcheck, J. S. 2015. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573-579.

Lennon, J. T., and S. E. Jones. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature reviews. Microbiology 9:119-130.

Lenth, R. V. 2016. Least-Squares Means: The R Package lsmeans. Journal of Statistical Software 69:1-33.

Magnin, A., R. Villalba, C. D. Torres, M. Stecconi, A. Passo, C. M. Sosa, and J. G. Puntieri. 2016. Effect of volcanic ash deposition on length and radial growths of a deciduous montane tree (Nothofagus pumilio ). Austral Ecology 42:103-112.

del Moral, R., and S. Y. Grishin. 1999. Volcanic Disturbances and Ecosystem Recovery. Pages 137-155 in L. R. Walker, editor.Ecosystems of disturbed ground. First edit. Elsevier, Amsterdam.

Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133-142.

Oesterheld, M., J. Loreti, M. Semmartin, and J. M. Paruelo. 1999. Grazing, fire, and climate effects on primary productivity of grasslands and savannas. Pages 287-306 in L. R. Walker, editor.Ecosystems of disturbed ground. First edit. Elsevier, Amsterdam.

Oleiro, M. I. 2015. Efecto de la diversidad funcional de insectos herbívoros en el ciclado de carbono y nitrógeno en bosques andino-patagónicos. Doctor de la Universidad de Buenos Aires en el área Ciencias Biológicas. Universidad de Buenos Aires, Argentina. Pp.105.

Piazza, M. V., L. A. Garibaldi, T. Kitzberger, and E. J. Chaneton. 2016. Impact of introduced herbivores on understory vegetation along a regional moisture gradient in Patagonian beech forests. Forest Ecology and Management 366:11-22.

Piazza, M. V. 2016. Impacto de los herbívoros domésticos sobre el reciclado de C y N: cambios mediados por la vegetación y el ambiente. Doctor en Ciencias Agropecuarias. Universidad de Buenos Aires, Argentina. Pp.200.

Pickett, S. T. A., J. Kolasa, J. J. Armesto, and S. L. Collins. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129-136.

Pinheiro, J. C., D. M. Bates, S. DebRoy, D. Sarkar, and R. C. Team. 2016. nlme: Linear and Nonlinear Mixed Effects Models.

Pinheiro, J. C., and Bates. 2000. Mixed-effects models in S and S-PLUS. Page Springer. Springer, New York.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Robertson, G. P., C. D.C., C. S. Bledsoe, and P. Sollins. 1999. Standard soil methods for long-term ecological research. Oxford University Press, New York.

Semmartin, M., M. R. Aguiar, R. A. Distel, A. S. Moretto, and C. M. Ghersa. 2004. Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107:148-160.

Singer, B. S., B. R. Jicha, M. A. Harper, J. A. Naranjo, L. E. Lara, and H. Moreno-Roa. 2008. Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Bulletin of the Geological Society of America 120:599-618.

Turner, M. G., W. L. Baker, C. J. Peterson, and R. K. Peet. 1998. Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems 1:511-523.

Turner, M. G., and R. H. Gardner. 2015. Landscape ecology in theory and practice: pattern and process. Springer, New York.

del Valle, H. F. 1998. Patagonian soils: A regional synthesis. Ecologia Austral 8:103-123.

Veblen, T. T., M. Mermoz, C. Martin, and T. Kitzberger. 1992. Ecological Impacts of Introduced Animals in Nahuel Huapi National Park, Argentina. Conservation Biology 6:71-83.

Veblen, T., M. González, G. Stewart, T. Kitzberger, and J. Brunet. 2016. Tectonic ecology of the temperate forests of South America and New Zealand. New Zealand Journal of Botany 54:223-246.

Vivanco, L., and A. T. Austin. 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96:727-736.

Zobel, D. B., and J. A. Antos. 1997. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecological Monographs 67:317-344.

La deposición de cenizas volcánicas modula la descomposición de hojarasca en bosques de Nothofagus dombeyi del norte de Patagonia

Descargas

Publicado

2018-03-03

Cómo citar

Piazza, M. V., Kitzberger, T., & Chaneton, E. J. (2018). La deposición de cenizas volcánicas modula la descomposición de hojarasca en bosques de Nothofagus dombeyi del norte de Patagonia. Ecología Austral, 28(1), 028–039. https://doi.org/10.25260/EA.18.28.1.0.561