Phosphorus and nitrogen fractions during base flow conditions of a Pampean stream and their relationship with land use

Authors

  • María J. Torti INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.
  • Silvina I. Portela INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.
  • Adrián E. Andriulo INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.20.30.3.0.1073

Keywords:

eutrophication, agriculture, urbanization, Pampean Region

Abstract

During the last decades, population growth and the associated intensification of anthropogenic activities (agriculture, industrialization and urbanization) has increased nutrient inputs to Pampean lotic bodies. However few studies have evaluated the influence of these changes on water quality. The objectives of this study were to determine nitrogen (N) and phosphorus (P) fractions, trophic status and nutrient limitation of a typical Pampean stream, and to compare nutrient contents and speciation with different land uses (urban/industrial versus agricultural). Stream water samples were obtained monthly between 2010 and 2012 from six locations along the Pergamino stream. The stream was highly productive (eutrophic/hypertrophic) and nutrient concentrations were greater than the environmental quality standards from different parts of the world as a result of point and diffuse source inputs in addition to the naturally high baseline nutrient concentrations. In the case of N, organic and particulate fractions predominated in sites surrounded by agriculture, while inorganic forms predominated in sites dominated by urban/industrial effluent discharges. Nutrients spatial variation along the Pergamino stream presented the lowest concentrations in the headwaters, the highest concentrations when crossing the city of Pergamino and intermediate values towards the mouth. In this basin, despite being located in the most important agricultural region of Argentina, urban and industrial point source discharges resulted in greater impairment of water quality than diffuse sources linked to agriculture. Between the city of Pergamino and the stream mouth, total N and P concentrations decreased by 50% as a result of dilution due to increased flow and other natural self-cleansing mechanisms. It is imperative to design a monitoring programme and to adopt management strategies designed to reduce nutrient input to avoid saturating the stream’s capacity to retain and process nutrient inputs.

Author Biographies

María J. Torti, INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.

Laboratorio de Alimentos, Suelos y Aguas. Estación Experimental Agropecuaria Pergamino

Silvina I. Portela, INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.

Grupo de Gestión Ambiental. Estación Experimental Agropecuaria Pergamino

Adrián E. Andriulo, INTA (Instituto Nacional de Tecnología Agropecuaria), Estación Experimental Agropecuaria Pergamino. Provincia de Buenos Aires, Argentina.

Grupo de Gestión Ambiental. Estación Experimental Agropecuaria Pergamino

References

Amuchástegui, G., L. di Franco, and C. Feijoó. 2016. Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia 767(1):65-79. https://doi.org/10.1007/s10750-015-2478-8.

APHA (American Public Health Association), American Water Works Association (AWWA), Water Pollution Control Federation (WPCF). 1989. Métodos normalizados para el análisis de aguas potables y residuales (Standard methods for the examination of water and wastewater). Díaz de Santos, Madrid, Spain. Pp. 1268.

Baron, J. S., E. K. Hall, B. T. Nolan, J. C. Finlay, E. S. Bernhardt, J. A. Harrison, F. Chan, and E. W. Boyer. 2013. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114(1):71-92. https://doi.org/10.1007/s10533-012-9788-y.

Banco Mundial database. URL: https://tinyurl.com/y3gj6fqr (accessed 27 March 2020).

Bechmann, M., J. Deelstra, P. Stålnacke, H. O. Eggestad, L. Øygarden, and A. Pengerud. 2008. Monitoring catchment scale agricultural pollution in Norway: policy instruments, implementation of mitigation methods and trends in nutrient and sediment losses. Environmental Science and Policy 11(2):102-114. https://doi.org/10.1016/j.envsci.2007.10.005.

Chagas, C. I., O. J. Santanatoglia, J. Moretton, M. Paz, and F. B. Kraemer. 2010. Movimiento superficial de contaminantes biológicos de origen ganadero en la red de drenaje de una cuenca de pampa ondulada. Ciencia del Suelo 28(1):23-31.

Conzonno, V. H. 2009. Limnología Química. First edition. Editorial de la Universidad Nacional de La Plata, La Plata, Argentina.

Darder, M. L., M. C. Sasal, A. E. Andriulo, M. G. Wilson, and C. I. Chagas. 2010. Coeficientes de enriquecimiento de fósforo, nitrógeno y carbono de sedimentos erosionados en diferentes secuencias de cultivos bajo siembra directa. Pp. 311 en Asociación Argentina de la Ciencia del Suelo (ed.). XXII Congreso Argentino de la Ciencia del Suelo, Rosario, Argentina.

Dodds, W. K. 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. Journal of the North American Benthological Society 22(2):171-181. https://doi.org/10.2307/1467990.

Dodds, W. K. 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51(1 part 2):671-680. URL: https://doi.org/10.4319/lo.2006.51.1_part_2.0671.

Dodds, W. K., and R. M. Oakes. 2004. A technique for establishing reference nutrient concentrations across watersheds affected by humans. Limnology and Oceanography: Methods 2(10):333-341. https://doi.org/10.4319/lom.2004.2.333.

Dodds, W. K., and R. M. Oakes. 2006. Controls on nutrients across a prairie stream watershed: Land use and riparian cover effects. Environmental Management 37(5):634-646. https://doi.org/10.1007/s00267-004-0072-3.

Dodds, W. K., J. R. Jones, and E. B. Welch. 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32(5):1455-1462. URL: https://doi.org/10.1016/S0043-1354(97)00370-9.

Einheuser, M. D., A. P. Nejadhashemi, S. P. Sowa, L. Wang, Y. A. Hamaamin, and S. A.Woznicki. 2012. Modeling the effects of conservation practices on stream health. Science of The Total Environment 435-436:380-391. https://doi.org/10.1016/j.scitotenv.2012.07.033.

Feijoó, C. S., and R. J. Lombardo. 2007. Baseline water quality and macrophyte assemblages in Pampean streams: A regional approach. Water Research 41(7):1399-1410. https://doi.org/10.1016/j.watres.2006.08.026.

Feijoó, C. S., A. Giorgi, M. E. García, and F. Momo. 1999. Temporal and spatial variability in streams of a pampean basin. Hydrobiologia 394(0):41-52. URL: https://doi.org/10.1023/a:1003583418401.

Figueiredo, R. O., D. Markewitz, E. A. Davidson, A. E. Schuler, O. dos S. Watrin, and P. de Souza Silva. 2010. Land-use effects on the chemical attributes of low-order streams in the eastern Amazon. Journal of Geophysical Research: Biogeosciences 115(G4). URL: https://doi.org/10.1029/2009JG001200.

Forsberg, C., and S. O. Ryding. 1980. Eutrophication Parameters and Trophic State Indices in 30 Swedish Waste Receiving Lakes. Achieves of Hydrobiology 89(1/2):189-207.

Gabellone, N. A., M. Claps, L. Solari, and N. Neschuk. 2010. Dinámica especial y temporal de fracciones de fósforo en la cuenca del río Salado (Buenos Aires, Argentina). Pp. 641-646 in M. Varni, I. Entraigas and L. Vives (eds.). Libro de Actas del I Congreso Internacional de Hidrología de Llanuras. Editorial Martín, Azul, Buenos Aires, Argentina.

Galindo, G., C. Sainato, C. Dapeña, J. L. Fernández-Turiel, D. Gimeno, M. C. Pomposiello, and H. P. Panarello. 2002. Natural and anthropogenic features influencing water quality in NE Buenos Aires, Argentina. Pp. 300-309 in E. Bocanegra, D. Martínez and H. Massone (eds.). Groundwater and Human Development.

Galindo, G., C. Sainato, C. Dapeña, J. L. Fernández-Turiel, D. Gimeno, M. C. Pomposiello, and H. P. Panarello. 2007. Surface and groundwater quality in the northeastern region of Buenos Aires Province, Argentina. Journal of South American Earth Sciences 23(4):336-345. https://doi.org/10.1016/j.jsames.2007.02.001.

Geographic Information System network database, INTA. 2014-2015 growing season. http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (accessed 13 September 2019).

Hall, A. J., C. M. Rebella, C. M. Ghersa, and J. P. Culot. 1992. Field-crop systems of the pampas. Pp. 413-450 in C. J. Pearson (ed.). Field Crop Ecosystems. Ecosystems of the World. Elsevier. Amsterdam.

Hausmann, S., D. F. Charles, J. Gerritsen, and T. J. Belton. 2016. A diatom-based biological condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams. Science of The Total Environment 562:914-927. https://doi.org/10.1016/j.scitotenv.2016.03.173.

Herrero, M. A., and S. B. Gil. 2008. Consideraciones ambientales de la intensificación en producción animal. Ecología Austral 18(3):273-289.

Iital, A., K. Pachel, and J. Deelstra. 2008. Monitoring of diffuse pollution from agriculture to support implementation of the WFD and the Nitrate Directive in Estonia. Environmental Science and Policy 11(2):185-193. https://doi.org/10.1016/j.envsci.2007.10.008.

Instituto Nacional de Estadística y Censos (INDEC). Censo Nacional de Población, Hogares y Viviendas 2010. https://www.indec.gob.ar/indec/web/Nivel4-CensoProvincia-3-999-06-623-2010 (accessed 13 September 2019).

Instituto Nacional de Tecnología Agropecuaria (INTA). 1972a. Carta de suelos de la República Argentina. Hoja 3360-32 Pergamino. INTA, Buenos Aires, Argentina.

Instituto Nacional de Tecnología Agropecuaria (INTA). 1972b. Carta de suelos de la República Argentina. Hoja 3360-33 Pérez Millán. INTA, Buenos Aires, Argentina.

International Organization for Standardization (ISO). 1991. ISO 10048:1991: Water quality - Determination of nitrogen - Catalytic digestion after reduction with Devarda's alloy.

Jarvie, H. P., B. A. Whitton, and C. Neal. 1998. Nitrogen and phosphorus in east coast British rivers: Speciation, sources and biological significance. Science of The Total Environment 210-211:79-109. https://doi.org/10.1016/S0048-9697(98)00109-0.

Jarvie, H. P., P. J. A. Withers, R. Hodgkinson, A. Bates, M. Neal, H. D. Wickham, S. A. Harman, and L. Armstrong. 2008. Influence of rural land use on streamwater nutrients and their ecological significance. Journal of Hydrology 350(3):166-186. https://doi.org/10.1016/j.jhydrol.2007.10.042.

Lewis, J., and F. Freitas. 1970. Physical and chemical methods of soil and water analysis. FAO Soils Bulletin 10. FAO, Rome. Pp. 275.

Moscuzza, C. 2010. Intensificación de la producción agropecuaria. Pp. 43-56 en A. Fernández Cirelli, C. Moscuzza, A. Pérez Carrera and A. Volpedo (eds.). Aspectos Ambientales de las Actividades Agropecuarias. Second edition. Agro Vet, Buenos Aires, Argentina.

Liang, X., S. Zhu, R. Ye, R. Guo, C. Zhu, C. Fu, G. Tian, and Y. Chen. 2014. Biological thresholds of nitrogen and phosphorus in a typical urban river system of the Yangtz delta, China. Environmental Pollution 192:251-258. https://doi.org/10.1016/j.envpol.2014.04.007.

Matlock, M. D., and R. A. Morgan. 2011. Ecological engineering design: Restoring and conserving ecosystem services John Wiley and Sons. New Jersey, USA. Pp. 339. https://doi.org/10.1002/9780470949993.

Molenat, J., C. Gascuel-Odoux, L. Ruiz, and G. Gruau. 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater catchment (France). Journal of Hydrology 348(3-4):363-378. https://doi.org/10.1016/j.jhydrol.2007.10.005.

Morrás, H. J. M. 1999. Geochemical differentiation of Quaternary sediments from the Pampean region based on soil phosphorus contents as detected in the early 20th century. Quaternary International 62(1):57-67. https://doi.org/10.1016/S1040-6182(99)00023-3

Mugni, H., A. Paracampo, and C. Bonetto. 2013. Nutrient Concentrations in a Pampasic First Order Streamwith Different Land Uses in the Surrounding Plots (Buenos Aires, Argentina). Bull Environ Contam Toxicol 91(4):391-395. 10.1007/s00128-013-1079-3..

Mugni, H., S. Jergentz, R. Schulz, A. Maine, and C. Bonetto. 2005. Phosphate and nitrogen compounds in streams of Pampean Plain areas under intensive cultivation (Buenos Aires, Argentina). Pp. 163-170 in L. Serrano and H. L. Golterman (eds.). Phosphate in Sediments, proceedings of the 4th International Symposium. Backhuys Publishers. The Netherlands.

Outram, F. N., R. J. Cooper, G. Sünnenberg, K. M. Hiscock, and A. A. Lovett. 2016. Antecedent conditions, hydrological connectivity and anthropogenic inputs: Factors affecting nitrate and phosphorus transfers to agricultural headwater streams. Science of The Total Environment 545-546:184-199. https://doi.org/10.1016/j.scitotenv.2015.12.025.

Portela, S., A. Andriulo, M. C. Sasal, F. Rimatori, and M. L. Darder. 2006. Drenaje profundo y lixiviación de Nitrógeno y su relación con el tipo de suelo: Estimación con lisímetros y un modelo de simulación. XX Congreso Argentino de la Ciencia del Suelo. Asociación Argentina de la Ciencia del Suelo. Salta-Jujuy.

Portela, S. I., A. E. Andriulo, E. G. Jobbágy, and M. C. Sasal. 2009. Water and nitrate exchange between cultivated ecosystems and groundwater in the Rolling Pampas. Agriculture, Ecosystems and Environment 134(3-4):277-286. http://dx.doi.org/10.1016/j.agee.2009.08.001.

Quirós, R. 2000. La eutrofización de las aguas continentales de Argentina. Pp. 43-47 in A. Fernández (ed.). El Agua en Iberoamérica: Acuíferos, Lagos y Embalses. Ciencia y Tecnología para el Desarrollo (CYTED). Subprograma XVII. Aprovechamiento y Gestión de Recursos Hídricos.

Quirós, R., M. B. Boveri, C. A. Petracchi, A. M. Rennella, J. J. Rosso, A. Sosnovsky, and H. T. vonBernard. 2006. Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. Pp. 1-16 en J. G. Tundisi, T. Matsumura-Tundisi and C. Sidagis Galli (eds.). Eutrofização na América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle. Instituto Internacional de Ecologia, Instituto Internacional de Ecologia e Gerenciamento Ambiental, Academia Brasileira de Ciências, Conselho Nacional de Desenvolvimento Científico e Tecnológico, InterAcademy Panel on International Issues, InterAmerican Network of Academies of Sciences.

Robert, S., F. Santangelo, I. Albornoz, and G. Dana. 2009. Estructura del feedlot en Argentina - Nivel de asociación entre la producción bovina a corral y los titulares de faena. Instituto de promocion de la carne vacuna argentina (IPCVA). URL: https://tinyurl.com/y24qvyhv (accessed 31 July 2020).

Rosso, J. J., and A. Fernández Cirelli. 2013. Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica 43(1):18-26. https://doi.org/10.1016/j.limno.2012.06.001.

Schenone, N., A. Volpedo, and A. F. Cirelli. 2008. Estado trofico y variación estacional de nutrientes en los ríos y canales del humedal mixo-halino de Bahía Samborombon (Argentina). Limnetica 27(1):143-150. https://doi.org/10.23818/limn.27.12.

Sierra, M. V., N. Gómez, A. V. Marano, and M. A. D. Siervi. 2013. Caracterización funcional y estructural del biofilm epipélico en relación al aumento de la urbanización en un arroyo de la Llanura Pampeana (Argentina). Ecología Austral 23(2):108-118.

Smith, V. H., and D. W. Schindler. 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24(4):201-207. https://doi.org/10.1016/j.tree.2008.11.009.

Uriburu Quirno, M., F. Damiano, J. Borús, H. Lozza, and J. Villarreal. 2010. Modelación hidrológica en modo actualizado del arroyo Pergamino. Pp. 563-570 in M. Varni, I. Entraigas and L. Vives (eds.). Libro de Actas del I Congreso Internacional de Hidrología de Llanuras. Editorial Martín, Azul, Buenos Aires, Argentina.

U.S. EPA (United States Environmental Protection Agency). 2000. Nutrient criteria technical guidance manual. Rivers and stream. EPA-822-B-00-002. Washington, USA. Environmental Protection Agency, Office of Water and Office of Science and Technology.

U.S. EPA (United States Environmental Protection Agency). 2016. National Rivers and Streams Assessment 2008-2009: A Collaborative Survey. EPA/841/R-16/007. Washington D.C., USA. Environmental Protection Agency, Office of Water and Office of Research and Development. URL: https://tinyurl.com/yy6umtvp.

Vega, M., R. Pardo, E. Barrado, and L. Debán. 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research 32(12):3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9.

Viglizzo, E. F., F. C. Frank, L. V. Carreño, E. G. Jobbágy, H. Pereyra, J. Clatt, D. Pincén, and M. F. Ricard. 2011. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology 17(2):959-973. https://doi.org/10.1111/j.1365-2486.2010.02293.x.

Volk, M., S. Liersch, and G. Schmidt. 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 26(3):580-588. https://doi.org/10.1016/j.landusepol.2008.08.005.

Volpedo, A. V., N. Schenone, and A. Fernández Cirelli. 2009. El proceso de eutrofización en la región pampeana (Argentina). Pp. 105-121 en A. Fernández Cirelli and L. Amaral (eds.). Los recursos hídricos en la Región del Mercosur: estudios de caso. Fundación de apoyo a la investigación, educación y extensión - Funep, Universidade Estadual Paulista (UNESP). Jaboticabal, Brazil.

Volpedo, A. V., and A. Fernández Cirelli. 2010. Contaminación y eutrofización de cuerpos de agua como consecuencia de las actividades agropecuarias. Pp. 93-116 en A. Fernández Cirelli, C. Moscuzza, A. Pérez Carrera and A. Volpedo (eds.). Aspectos Ambientales de las Actividades Agropecuarias. Second edition. Agro Vet, Buenos Aires, Argentina.

Wais de Badgen, I. R. 1998. Ecología de la contaminación ambiental. Universo, Buenos Aires, Argentina. Pp. 188.

Withers, P. J. A., and E. I. Lord. 2002. Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Science of The Total Environment 282-283:9-24. https://doi.org/10.1016/S0048-9697(01)00935-4.

Withers, P. J. A., and H. P. Jarvie. 2008. Delivery and cycling of phosphorus in rivers: A review. Science of The Total Environment 400(1):379-395. https://doi.org/10.1016/j.scitotenv.2008.08.002.

Yates, C. A., and P. J. Johnes. 2013. Nitrogen speciation and phosphorus fractionation dynamics in a lowland Chalk catchment. Science of The Total Environment 444:466-479. https://doi.org/10.1016/j.scitotenv.2012.12.002.

Phosphorus and nitrogen fractions during base flow conditions of a Pampean stream and their relationship with land use

Downloads

Additional Files

Published

2020-08-26

How to Cite

Torti, M. J., Portela, S. I., & Andriulo, A. E. (2020). Phosphorus and nitrogen fractions during base flow conditions of a Pampean stream and their relationship with land use. Ecología Austral, 30(3), 331–343. https://doi.org/10.25260/EA.20.30.3.0.1073