Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis

Authors

  • Michel Sciberras Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Agustín G. Menechella Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Instituto Argentino de Oceanografía (IADO), UNS-CONICET
  • Kevin A. Rucci Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Virología ‘Dr. J.M. Vanella’ (InViV), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC)
  • Néstor J. Cazzaniga Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)
  • Hugo J. Marrero Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), UNS-CONICET

DOI:

https://doi.org/10.25260/EA.22.32.2.0.1840

Keywords:

global-scale analysis, heavy metal, organic matter, oil pollution, marine meiofauna, monitoring

Abstract

Meiofauna has been considered a suitable group for monitoring pollution effects. Based on different pollution tolerance, a nematode/copepod ratio was proposed as an easy tool for monitoring the effect of anthropogenic activities. Although the validity of this tool has been subject to debate due to controversial results, it is still widely used. To establish a general pattern in the response of the ratio and nematode and copepod abundances to the effects of organic enrichment, oil pollution and metal enrichment in the marine environment, we conducted a global-scale meta-analysis. The database consisted of 715 pairs of data obtained from 46 studies published during the last 39 years. We could not find a general trend in the response of nematode and copepod abundances to these pollutants. Regarding the ratio, the only significant difference we found is under the effect of oil pollution. However, this difference appears to be an artifact due to publication bias. The information gathered in this study suggests that the ratio and mean abundances are not reliable tools for monitoring purposes.

References

Alves, A. S., H. Adão, T. J. Ferrero, J. C. Marques, M. J. Costa, and J. Patrício. 2013. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: The use of nematodes in ecological quality assessment. Ecol Indic 24:462-475. https://doi.org/10.1016/j.ecolind.2012.07.013.

Ansari, Z. A., and B. Ingole. 2002. Effect of an oil spill from M V Sea Transporter on intertidal meiofauna at Goa, India. Mar Pollut Bull 44:396-402. https://doi.org/10.1016/S0025-326X(01)00248-X.

Ansari, K. G. M. T., S. Lyla, S. A. Khan, and P. Bhadury. 2016. Diversity patterns of free-living marine nematodes in the southwest continental shelf off Bay of Bengal and their link to abiotic variables. Mar Ecol 37:631-644. https://doi.org/10.1111/maec.12332.

Austen, M. C., and A. J. McEvoy. 1997. The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol 211:247-261. https://doi.org/10.1016/S0022-0981(96)02734-7.

Baguley, J., P. Montagna, C. Cooksey, J. Hyland, H. Bang, et al. 2015. Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127-140. https://doi.org/10.3354/meps11290.

Balsamo, M., G. Albertelli, V. U. Ceccherelli, R. Coccioni, M. A. Colangelo, et al. 2010. Meiofauna of the Adriatic Sea: present knowledge and future perspectives. Chem Ecol 26:45-63. https://doi.org/10.1080/02757541003705492.

Bertocci, I., A. Dell’anno, L. Musco, C. Gambi, V. Saggiomo, et al. 2019. Multiple human pressures in coastal habitats: variation of meiofaunal assemblages associated with sewage discharge in a post-industrial area. Sci Total Environ 655:1218-1231. https://doi.org/10.1016/j.scitotenv.2018.11.121.

Bohórquez, J., S. Papaspyrou, M. Yúfera, S. A. Van Bergeijk, E. García-Robledo, et al. 2013. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar Pollut Bull 70:10-17. https://doi.org/10.1016/j.marpolbul.2013.02.002.

Boucher, G. 1985. Long Term Monitoring of Meiofauna Densities After the Amoco Cadiz Oil Spill. Mar Pollut Bull 16:328-333. https://doi.org/10.1016/0025-326X(85)90449-7.

Carman, K. R., J. W. Fleeger, and S. M. Pomarico. 2000. Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Mar Environ Res 49:255-278. https://doi.org/10.1016/S0141-1136(99)00072-0.

Chapman, P. M. 1990. The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97-98:815-825. https://doi.org/10.1016/0048-9697(90)90277-2.

Claudet, J., and S. Fraschetti. 2010. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195-2206. https://doi.org/10.1016/j.biocon.2010.06.004.

Coull, B. C. 1999. Role of meiofauna in estuarine soft-bottom habitats. Austral Ecol 24:327-343. https://doi.org/10.1046/j.1442-9993.1999.00979.x.

Dal Zotto, M., A. Santulli, R. Simonini, and M. A. Todaro. 2016. Organic enrichment effects on a marine meiofauna community, with focus on Kinorhyncha. Zool Anzeiger - A J Comp Zool 265:127-140. https://doi.org/10.1016/j.jcz.2016.03.013.

Danovaro, R., M. Fabiano, and M. Vincx. 1995. Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Mar Pollut Bull 30:133-145. https://doi.org/10.1016/0025-326X(94)00114-O.

Elarbaoui, S., M. Richard, F. Boufahja, E. Mahmoudi, and H. Thomas-Guyon. 2015. Effect of crude oil exposure and dispersant application on meiofauna: an intertidal mesocosm experiment. Environ Sci Process Impacts 17:997-1004. https://doi.org/10.1039/C5EM00051C.

Ellis, D. 1985. Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:459. https://doi.org/10.1016/0025-326X(85)90362-5.

Frontalini, F., F. Semprucci, R. Coccioni, M. Balsamo, P. Bittoni, and A. Covazzi-Harriague. 2011. On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environ Monit Assess 180:325-344. https://doi.org/10.1007/s10661-010-1791-y.

Gao, C., and X. Liu. 2018. Spatio-temporal distribution of meiofaunal assemblages and its relationship with environmental factors in a semi-enclosed bay. Mar Pollut Bull 131:45-52. https://doi.org/10.1016/j.marpolbul.2018.03.047.

Gee, J. M., R. M. Warwick, M. Schaanning, J. A. Berge, and W. G. Ambrose. 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. J Exp Mar Bio Ecol 91:247-262. https://doi.org/10.1016/0022-0981(85)90179-0.

Giere, O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Second edition. Springer-Verlag Berlin Heidelberg, Berlin, Germany.

Hedges, L. V., and I. Olkin. 1985. Statistical methods for Meta-Analysis. First edition. Academic Press Inc., Orlando, Florida, USA.

Hoegh-Guldberg, O., and J. F. Bruno. 2010. The Impact of Climate Change on the World’s Marine Ecosystems. Science 328:1523-1528. https://doi.org/10.1126/science.1189930.

Huang, Y., Z. Zhang, and X. Liu. 2005. Studies on the community structures of meiofauna and marine nematode at six stations in the Southern Yellow Sea, China. J Ocean Univ China 4:34-42. https://doi.org/10.1007/s11802-005-0021-7.

Kim, K. S., S. Lee, J. H. Hong, W. Lee, and E. O. Park. 2014. A Study on Meiofauna Community in the Subtidal Sediment outside of the Saemangeum Seadike in the West Coast of Korea. Ocean Polar Res 36:209-223. https://doi.org/10.4217/OPR.2014.36.3.209.

Kroeger, S. B., H. M. Hanslin, T. Lennartsson, M. D’Amico, J. Kollmann, et al. 2021. Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Sci Total Environ 151478. https://doi.org/10.1016/j.scitotenv.2021.151478.

Lambshead, P. J. D. 1984. The Nematode/Copepod Ratio. Some Anomalous Results from the Firth of Clyde. Mar Pollut Bull 15:256-259. https://doi.org/10.1016/0025-326X(84)90365-5.

Lee, M. R., J. A. Correa, and J. C. Castilla. 2001. An Assessment of the Potential Use of the Nematode to Copepod Ratio in the Monitoring of Metals Pollution. The Chañaral Case. Mar Pollut Bull 42:696-701. https://doi.org/10.1016/S0025-326X(00)00220-4.

Montagna, P. A., J. G. Baguley, C. Cooksey, I. Hartwell, L. J. Hyde, et al. 2013. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS One 8:e70540. https://doi.org/10.1371/journal.pone.0070540.

Morad, T. Y., Z. Dubinsky, and D. Iluz. 2017. Meiobenthos Assemblages as Bioindicators for Coastal Pollution Assessment. Open J Mar Sci 07:409-423. https://doi.org/10.4236/ojms.2017.73028.

Moreno, M., F. Semprucci, L. Vezzulli, M. Balsamo, M. Fabiano et al. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic 11:328-336. https://doi.org/10.1016/j.ecolind.2010.05.011.

Nakagawa, S., D. W. A. Noble, A. M. Senior, and M. Lagisz. 2017. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol 15:18. https://doi.org/10.1186/s12915-017-0357-7.

O´Brien, A. L., and M. J. Keough. 2014. Ecological responses to contamination: a meta-analysis of experimental marine studies. Environ Pollut 195:185-191. https://doi.org/10.1016/j.envpol.2014.09.005.

Page M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71.

Pereira, T. J., R. Gingold, A. D. M. Villegas, and A. Rocha-Olivares. 2017. Patterns of Spatial Variation of Meiofauna in Sandy Beaches of Northwestern Mexico with Contrasting Levels of Disturbance. Thalass An Int J Mar Sci 34:53-63. https://doi.org/10.1007/s41208-017-0038-x.

Polese, G., F. Semprucci, L. Campoli, V. Maselli, M. R. D’alcalà, et al. 2018. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar Biodivers 48:127-137. https://doi.org/10.1007/s12526-017-0818-9.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Raffaelli, D. G., and C. F. Mason. 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158-163. https://doi.org/10.1016/0025-326X(81)90227-7.

Rees, H. L., and A. Eleftheriou. 1989. North Sea benthos: A review of field investigations into the biological effects of man’s activities. ICES J Mar Sci 45:284-305. https://doi.org/10.1093/icesjms/45.3.284.

Reutgard, M., A. K. Eriksson Wiklund, M. Breitholtz, and B. Sundelin. 2014. Embryo development of the benthic amphipod Monoporeia affinis as a tool for monitoring and assessment of biological effects of contaminants in the field: A meta-analysis. Ecol Indic 36:483-490. https://doi.org/10.1016/j.ecolind.2013.08.021.

Riera, R., F. Tuya, A. Sacramento, E. Ramos, Ó. Monterroso, et al. 2013. Influence of the combined disposal of sewage and brine on meiofauna. Ciencias Mar 39:15-27. https://doi.org/10.7773/cm.v39i1.2162.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Phychol Bull 86 (3):638-641. https://doi.org/10.1037/0033-2909.86.3.638.

Rubal, M., P. Veiga, and C. Besteiro. 2009. Nematode/copepod index: Importance of sedimentary parameters, sampling methodology and baseline values. Thalassas 25:9-18.

Rudd, M. A. 2014. Scientists’ perspectives on global ocean research priorities. Front Mar Sci 1:1-20. https://doi.org/10.3389/fmars.2014.00036.

Salas, F., C. Marcos, J. M. Neto, J. Patrício, A. Pérez-Ruzafa, et al. 2006. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean Coast Manage 49:308-331. doi:10.1016/j.ocecoaman.2006.03.001.

Sandulli, R. 1986. Pollution and meiofuana: A short review. Nov Thalass 8:317-323.

Sun, X., H. Zhou, E. Hua, S. Xu, B. Cong, et al. 2014. Meiofauna and its sedimentary environment as an integrated indication of anthropogenic disturbance to sandy beach ecosystems. Mar Pollut Bull 88:260-267. https://doi.org/10.1016/j.marpolbul.2014.08.033.

Veiga, P., C. Besteiro, and M. Rubal. 2010. Meiofauna communities in exposed sandy beaches on the Galician coast (NW Spain), six months after the Prestige oil spill: the role of polycyclic aromatic hydrocarbons (PAHs). Sci Mar 74:385-394. https://doi.org/10.3989/scimar.2010.74n2385.

Vidaković, J. 1983. The influence of raw domestic sewage on density and distribution of meiofauna. Mar Pollut Bull 14:84-88. https://doi.org/10.1016/0025-326X(83)90306-5.

Viechtbauer, W. 2010. Conducting Meta-Analyses in R with the metafor Package. J Stat Softw. https://doi.org/10.18637/jss.v036.i03.

Zeppilli, D., J. Sarrazin, D. Leduc, P. M. Arbizu, D. Fontaneto, et al. 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505-535. https://doi.org/10.1007/s12526-015-0359-z.

Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis

Downloads

Additional Files

Published

2022-06-27 — Updated on 2022-11-15

Versions

How to Cite

Sciberras, M., Menechella, A. G., Rucci, K. A., Cazzaniga, N. J., & Marrero, H. J. (2022). Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis. Ecología Austral, 32(2), 516–525. https://doi.org/10.25260/EA.22.32.2.0.1840 (Original work published June 27, 2022)