Índice nematodo/copépodo y las abundancias de nematodos y copépodos como bioindicadores de contaminación: un meta-análisis

Autores/as

  • Michel Sciberras Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Agustín G. Menechella Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Instituto Argentino de Oceanografía (IADO), UNS-CONICET
  • Kevin A. Rucci Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Virología ‘Dr. J.M. Vanella’ (InViV), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC)
  • Néstor J. Cazzaniga Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS). Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)
  • Hugo J. Marrero Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), UNS-CONICET

DOI:

https://doi.org/10.25260/EA.22.32.2.0.1840

Palabras clave:

análisis a escala global, metales pesados, materia orgánica, contaminación por petróleo, meiofauna marina, monitoreo

Resumen

La meiofauna ha sido considerada un grupo adecuado para monitorear los efectos de la contaminación. En base a diferencias en la tolerancia a la contaminación, se propuso el índice nematodo/copépodo como una herramienta sencilla para monitorear el efecto de las actividades antropogénicas. Aunque la validez de esta herramienta ha estado sujeta a discusión debido a resultados controversiales, todavía se la usa ampliamente. Para determinar si existe un patrón general en la respuesta del índice y de las abundancias de nematodos y copépodos a los efectos del enriquecimiento orgánico, la contaminación por petróleo y la presencia de metales pesados en el ambiente marino, realizamos un meta-análisis a escala global. La base de datos consistió en 715 pares de datos obtenidos a partir de 46 estudios publicados durante los últimos 39 años. No pudimos encontrar un patrón general en la respuesta de la abundancia de nematodos y copépodos. En cuanto al índice, la única diferencia significativa que encontramos fue bajo el efecto de la contaminación por petróleo. Sin embargo, esta diferencia parece ser un artefacto debido a un sesgo de publicación. La información obtenida en este estudio sugiere que tanto el índice como las abundancias medias no son buenas herramientas para el monitoreo ambiental.

Citas

Alves, A. S., H. Adão, T. J. Ferrero, J. C. Marques, M. J. Costa, and J. Patrício. 2013. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: The use of nematodes in ecological quality assessment. Ecol Indic 24:462-475. https://doi.org/10.1016/j.ecolind.2012.07.013.

Ansari, Z. A., and B. Ingole. 2002. Effect of an oil spill from M V Sea Transporter on intertidal meiofauna at Goa, India. Mar Pollut Bull 44:396-402. https://doi.org/10.1016/S0025-326X(01)00248-X.

Ansari, K. G. M. T., S. Lyla, S. A. Khan, and P. Bhadury. 2016. Diversity patterns of free-living marine nematodes in the southwest continental shelf off Bay of Bengal and their link to abiotic variables. Mar Ecol 37:631-644. https://doi.org/10.1111/maec.12332.

Austen, M. C., and A. J. McEvoy. 1997. The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol 211:247-261. https://doi.org/10.1016/S0022-0981(96)02734-7.

Baguley, J., P. Montagna, C. Cooksey, J. Hyland, H. Bang, et al. 2015. Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127-140. https://doi.org/10.3354/meps11290.

Balsamo, M., G. Albertelli, V. U. Ceccherelli, R. Coccioni, M. A. Colangelo, et al. 2010. Meiofauna of the Adriatic Sea: present knowledge and future perspectives. Chem Ecol 26:45-63. https://doi.org/10.1080/02757541003705492.

Bertocci, I., A. Dell’anno, L. Musco, C. Gambi, V. Saggiomo, et al. 2019. Multiple human pressures in coastal habitats: variation of meiofaunal assemblages associated with sewage discharge in a post-industrial area. Sci Total Environ 655:1218-1231. https://doi.org/10.1016/j.scitotenv.2018.11.121.

Bohórquez, J., S. Papaspyrou, M. Yúfera, S. A. Van Bergeijk, E. García-Robledo, et al. 2013. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz. Mar Pollut Bull 70:10-17. https://doi.org/10.1016/j.marpolbul.2013.02.002.

Boucher, G. 1985. Long Term Monitoring of Meiofauna Densities After the Amoco Cadiz Oil Spill. Mar Pollut Bull 16:328-333. https://doi.org/10.1016/0025-326X(85)90449-7.

Carman, K. R., J. W. Fleeger, and S. M. Pomarico. 2000. Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Mar Environ Res 49:255-278. https://doi.org/10.1016/S0141-1136(99)00072-0.

Chapman, P. M. 1990. The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97-98:815-825. https://doi.org/10.1016/0048-9697(90)90277-2.

Claudet, J., and S. Fraschetti. 2010. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195-2206. https://doi.org/10.1016/j.biocon.2010.06.004.

Coull, B. C. 1999. Role of meiofauna in estuarine soft-bottom habitats. Austral Ecol 24:327-343. https://doi.org/10.1046/j.1442-9993.1999.00979.x.

Dal Zotto, M., A. Santulli, R. Simonini, and M. A. Todaro. 2016. Organic enrichment effects on a marine meiofauna community, with focus on Kinorhyncha. Zool Anzeiger - A J Comp Zool 265:127-140. https://doi.org/10.1016/j.jcz.2016.03.013.

Danovaro, R., M. Fabiano, and M. Vincx. 1995. Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Mar Pollut Bull 30:133-145. https://doi.org/10.1016/0025-326X(94)00114-O.

Elarbaoui, S., M. Richard, F. Boufahja, E. Mahmoudi, and H. Thomas-Guyon. 2015. Effect of crude oil exposure and dispersant application on meiofauna: an intertidal mesocosm experiment. Environ Sci Process Impacts 17:997-1004. https://doi.org/10.1039/C5EM00051C.

Ellis, D. 1985. Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:459. https://doi.org/10.1016/0025-326X(85)90362-5.

Frontalini, F., F. Semprucci, R. Coccioni, M. Balsamo, P. Bittoni, and A. Covazzi-Harriague. 2011. On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environ Monit Assess 180:325-344. https://doi.org/10.1007/s10661-010-1791-y.

Gao, C., and X. Liu. 2018. Spatio-temporal distribution of meiofaunal assemblages and its relationship with environmental factors in a semi-enclosed bay. Mar Pollut Bull 131:45-52. https://doi.org/10.1016/j.marpolbul.2018.03.047.

Gee, J. M., R. M. Warwick, M. Schaanning, J. A. Berge, and W. G. Ambrose. 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. J Exp Mar Bio Ecol 91:247-262. https://doi.org/10.1016/0022-0981(85)90179-0.

Giere, O. 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. Second edition. Springer-Verlag Berlin Heidelberg, Berlin, Germany.

Hedges, L. V., and I. Olkin. 1985. Statistical methods for Meta-Analysis. First edition. Academic Press Inc., Orlando, Florida, USA.

Hoegh-Guldberg, O., and J. F. Bruno. 2010. The Impact of Climate Change on the World’s Marine Ecosystems. Science 328:1523-1528. https://doi.org/10.1126/science.1189930.

Huang, Y., Z. Zhang, and X. Liu. 2005. Studies on the community structures of meiofauna and marine nematode at six stations in the Southern Yellow Sea, China. J Ocean Univ China 4:34-42. https://doi.org/10.1007/s11802-005-0021-7.

Kim, K. S., S. Lee, J. H. Hong, W. Lee, and E. O. Park. 2014. A Study on Meiofauna Community in the Subtidal Sediment outside of the Saemangeum Seadike in the West Coast of Korea. Ocean Polar Res 36:209-223. https://doi.org/10.4217/OPR.2014.36.3.209.

Kroeger, S. B., H. M. Hanslin, T. Lennartsson, M. D’Amico, J. Kollmann, et al. 2021. Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Sci Total Environ 151478. https://doi.org/10.1016/j.scitotenv.2021.151478.

Lambshead, P. J. D. 1984. The Nematode/Copepod Ratio. Some Anomalous Results from the Firth of Clyde. Mar Pollut Bull 15:256-259. https://doi.org/10.1016/0025-326X(84)90365-5.

Lee, M. R., J. A. Correa, and J. C. Castilla. 2001. An Assessment of the Potential Use of the Nematode to Copepod Ratio in the Monitoring of Metals Pollution. The Chañaral Case. Mar Pollut Bull 42:696-701. https://doi.org/10.1016/S0025-326X(00)00220-4.

Montagna, P. A., J. G. Baguley, C. Cooksey, I. Hartwell, L. J. Hyde, et al. 2013. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS One 8:e70540. https://doi.org/10.1371/journal.pone.0070540.

Morad, T. Y., Z. Dubinsky, and D. Iluz. 2017. Meiobenthos Assemblages as Bioindicators for Coastal Pollution Assessment. Open J Mar Sci 07:409-423. https://doi.org/10.4236/ojms.2017.73028.

Moreno, M., F. Semprucci, L. Vezzulli, M. Balsamo, M. Fabiano et al. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic 11:328-336. https://doi.org/10.1016/j.ecolind.2010.05.011.

Nakagawa, S., D. W. A. Noble, A. M. Senior, and M. Lagisz. 2017. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol 15:18. https://doi.org/10.1186/s12915-017-0357-7.

O´Brien, A. L., and M. J. Keough. 2014. Ecological responses to contamination: a meta-analysis of experimental marine studies. Environ Pollut 195:185-191. https://doi.org/10.1016/j.envpol.2014.09.005.

Page M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71.

Pereira, T. J., R. Gingold, A. D. M. Villegas, and A. Rocha-Olivares. 2017. Patterns of Spatial Variation of Meiofauna in Sandy Beaches of Northwestern Mexico with Contrasting Levels of Disturbance. Thalass An Int J Mar Sci 34:53-63. https://doi.org/10.1007/s41208-017-0038-x.

Polese, G., F. Semprucci, L. Campoli, V. Maselli, M. R. D’alcalà, et al. 2018. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar Biodivers 48:127-137. https://doi.org/10.1007/s12526-017-0818-9.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: R-project.org.

Raffaelli, D. G., and C. F. Mason. 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158-163. https://doi.org/10.1016/0025-326X(81)90227-7.

Rees, H. L., and A. Eleftheriou. 1989. North Sea benthos: A review of field investigations into the biological effects of man’s activities. ICES J Mar Sci 45:284-305. https://doi.org/10.1093/icesjms/45.3.284.

Reutgard, M., A. K. Eriksson Wiklund, M. Breitholtz, and B. Sundelin. 2014. Embryo development of the benthic amphipod Monoporeia affinis as a tool for monitoring and assessment of biological effects of contaminants in the field: A meta-analysis. Ecol Indic 36:483-490. https://doi.org/10.1016/j.ecolind.2013.08.021.

Riera, R., F. Tuya, A. Sacramento, E. Ramos, Ó. Monterroso, et al. 2013. Influence of the combined disposal of sewage and brine on meiofauna. Ciencias Mar 39:15-27. https://doi.org/10.7773/cm.v39i1.2162.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Phychol Bull 86 (3):638-641. https://doi.org/10.1037/0033-2909.86.3.638.

Rubal, M., P. Veiga, and C. Besteiro. 2009. Nematode/copepod index: Importance of sedimentary parameters, sampling methodology and baseline values. Thalassas 25:9-18.

Rudd, M. A. 2014. Scientists’ perspectives on global ocean research priorities. Front Mar Sci 1:1-20. https://doi.org/10.3389/fmars.2014.00036.

Salas, F., C. Marcos, J. M. Neto, J. Patrício, A. Pérez-Ruzafa, et al. 2006. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean Coast Manage 49:308-331. doi:10.1016/j.ocecoaman.2006.03.001.

Sandulli, R. 1986. Pollution and meiofuana: A short review. Nov Thalass 8:317-323.

Sun, X., H. Zhou, E. Hua, S. Xu, B. Cong, et al. 2014. Meiofauna and its sedimentary environment as an integrated indication of anthropogenic disturbance to sandy beach ecosystems. Mar Pollut Bull 88:260-267. https://doi.org/10.1016/j.marpolbul.2014.08.033.

Veiga, P., C. Besteiro, and M. Rubal. 2010. Meiofauna communities in exposed sandy beaches on the Galician coast (NW Spain), six months after the Prestige oil spill: the role of polycyclic aromatic hydrocarbons (PAHs). Sci Mar 74:385-394. https://doi.org/10.3989/scimar.2010.74n2385.

Vidaković, J. 1983. The influence of raw domestic sewage on density and distribution of meiofauna. Mar Pollut Bull 14:84-88. https://doi.org/10.1016/0025-326X(83)90306-5.

Viechtbauer, W. 2010. Conducting Meta-Analyses in R with the metafor Package. J Stat Softw. https://doi.org/10.18637/jss.v036.i03.

Zeppilli, D., J. Sarrazin, D. Leduc, P. M. Arbizu, D. Fontaneto, et al. 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505-535. https://doi.org/10.1007/s12526-015-0359-z.

Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis

Descargas

Archivos adicionales

Publicado

2022-06-27 — Actualizado el 2022-11-15

Versiones

Cómo citar

Sciberras, M., Menechella, A. G., Rucci, K. A., Cazzaniga, N. J., & Marrero, H. J. (2022). Índice nematodo/copépodo y las abundancias de nematodos y copépodos como bioindicadores de contaminación: un meta-análisis. Ecología Austral, 32(2), 516–525. https://doi.org/10.25260/EA.22.32.2.0.1840 (Original work published 27 de junio de 2022)