Mosquito vectors of yellow fever virus in areas of epidemiological risk in northeastern Argentina

Authors

  • Arturo A. Lizuain Centro Nacional de Diagnóstico e Investigación en Endemoepidemias (CeNDIE). Administración Nacional de Laboratorios e Institutos para la Salud "Dr. Carlos G. Malbrán" (ANLIS-Malbrán). Ciudad Autónoma de Buenos Aires, Argentina
  • Evangelina Muttis Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • Marina Leporace Instituto Universitario de Ciencias de la Salud, Fundación H. A. Barceló, Laboratorio de Control de Vectores Entomológicos de Importancia Sanitaria (LaCVEIS). Santo Tomé, Corrientes, Argentina
  • María E. Cano Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • Soraya Acardi Instituto Universitario de Ciencias de la Salud, Fundación H. A. Barceló, Laboratorio de Control de Vectores Entomológicos de Importancia Sanitaria (LaCVEIS). Santo Tomé, Corrientes, Argentina
  • Francisco Sánchez Gavier Estación Biológica Corrientes (EBCO), Centro de Ecología Aplicada del Litoral (CECOAL), CONICET. San Cayetano, Corrientes, Argentina
  • Mahia M. Ayala Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • Melina V. Brividoro Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • Gerardo A. Marti Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • María V. Micieli Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP). La Plata, Argentina
  • Mariana Manteca-Acosta Centro Nacional de Diagnóstico e Investigación en Endemoepidemias (CeNDIE). Administración Nacional de Laboratorios e Institutos para la Salud "Dr. Carlos G. Malbrán" (ANLIS-Malbrán). Ciudad Autónoma de Buenos Aires, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.2.0.2254

Keywords:

arbovirus, Aedes albopictus, Haemagogus leucocelaenus, Sabethes albiprivus

Abstract

Due to several epizootic events between 2020 and 2021 in the south of Brazil near the border with Argentina, we performed mosquito surveys in areas of epidemiological risk in northeast Argentina to evaluate abundance and distributions of mosquito vectors from the yellow fever virus (YFV) (Diptera: Culicidae). For the most abundant species, the number of individuals captured per collector was evaluated based on the capturing time range. With a total sampling effort of 191 collector-hours, we captured 676 mosquitoes belonging to 6 genera and 16 species. The most abundant species were Aedes (Ochlerotatus) scapularis (Rondani) (33.58%), Sabethes (Sabethes) albiprivus Theobald (20.27%), Aedes (Stegomyia) albopictus (Skuse) (17.75%) and Haemagogus (Conopostegus) leucocelaenus (Dyar and Shannon) (15.86%). Sabethes albiprivus and Ae. albopictus showed activity peaks at noon and morning, respectively, while other species showed no important time differences between 10:00AM and 15:00PM. Our results show that the most abundant mosquito species in those environments with epidemiological risk in northern Corrientes and southern Misiones are categorized as important in the transmission of the YFV. Moreover, we report an expansion of Ae. albopictus distribution and the first record of Aedes (Ochlerotatus) patersoni Shannon and Del Ponte in Corrientes and Misiones provinces.

References

Arnell, J. H. 1976. Mosquito studies (Diptera, Culicidae). xxxiii. A revision of the Scapularis group of Aedes ochlerotatus. Contribution of the American Entomological Institute 13(3):1-144.

Burkart, R., N. O. Bárbaro, R. O. Sánchez, and D. A. Gómez. 1999. Ecorregiones de la Argentina. Administración de Parques Nacionales. Buenos Aires, Argentina. Pp.1-43.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1-48. https://doi.org/10.18637/jss.v067.i01.

Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler, and B. M. Bolker 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized. Linear mixed modeling. The R Journal 9(2):378-400. https://doi.org/10.32614/RJ-2017-066.

Cano, M. E., G. A. Marti, J. A. Alencar, S. O. Freitas Silva, and M. V Micieli. 2022. Categorization by score of mosquito species (Diptera: Culicidae) related to yellow fever epizootics in Argentina. Journal of Medical Entomology 59(5):1766-1777. https://doi.org/10.1093/jme/tjac079.

Cano, M. E., G. A. Marti, A. Balsalobre, E. Muttis, E. A. Bruno, et al. 2021. Database of Sabethes and Haemagogus (Diptera: Culicidae) in Argentina: sylvatic vectors of the yellow fever virus. Journal of Medical Entomology 58(4):1762-1770. https://doi.org/10.1093/jme/tjab059.

Chadee, D. D., P. S. Corbet, and J. J. D. Greenwood. 1990. Egg‐laying Yellow Fever Mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomologia Experimentalis et Applicata 57(3):295-298. https://doi.org/10.1111/j.1570-7458.1990.tb01442.x.

Cunha, M. S., A. C. da Costa, N. C. C. de Azevedo Fernandes, J. M. Guerra, F. C. P. dos Santos, J. S. Nogueira, L. G. D’Agostino, S. V. Komninakis, S. S. Witkin, R. A. Ressio, et al. 2019. Epizootics due to yellow fever virus in São Paulo State, Brazil: viral dissemination to new areas (2016-2017). Scientific Reports 9:1-13. https://doi.org/10.1038/s41598-019-41950-3.

Darsie, R. F. 1985. Mosquitoes of Argentina. Part I. Keys for identification of adult females and fourth stage larvae in English and Spanish (Diptera, Culicidae). Mosquito Systematics 17:153-253.

de Abreu, F. V. S., I. P. Ribeiro, A. Ferreira-de-Brito, A. A. C. dos Santos, R. M. de Miranda, I. de S. Bonelly, M. S. A. S. Neves, M. I. Bersot, T. P. dos Santos, M. Q. Gomes, et al. 2019. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016-2018. Emerging Microbes and Infections 8:218-231. https://doi.org/10.1080/22221751.2019.1568180.

Forattini, O. P., and A. C. Gomes. 1988. Biting activity of Aedes scapularis (Rondani) and Haemagogus mosquitoes in southern Brazil (Diptera: Culicidae). Revista de Saúde Pública 22(2):84-93. https://doi.org/10.1590/S0034-89101988000200003.

Galindo, P., and H. Trapido. 1957. Forest mosquitoes associated with Sylvan Yellow Fever in Nicaragua. American Journal of Tropical Medicine and Hygiene 6(1):145-152. https://doi.org/10.4269/ajtmh.1957.6.145.

Goenaga, S., C. Fabbri, J. Rondan Dueñas, C. Gardenal, G. C. Rossi et al. 2012. Isolation of Yellow fever virus from mosquitoes in Misiones Province, Argentina. Vector-borne and Zoonotic Diseases 12(11):986-993. https://doi.org/10.1089/vbz.2011.0730.

Goenaga, S., A. Chuchuy, M. V. Micieli, B. Natalini, J. Kuruc, et al. 2020. Expansion of the distribution of Aedes albopictus (Diptera: Culicidae): new records in northern Argentina and their implications from an epidemiological perspective. Journal of Medical Entomology 57(4):1310-1313. https://doi.org/10.1093/jme/tjaa009.

Guedes, A. S., and M. A. De Souza. 1964. Psorophora albigenu and P. albipes. Revista Brasileira de Malariologia 16(4):471-86.

Holzmann, I., I. Agostini, J. I. Areta, H. Ferreyra, P. Beldomenico, et al. 2010. Impact of yellow fever outbreak son two howler monkey species (Alouatta guariba clamitans and A. caraya) in Misiones, Argentina. American Journal of Primatology 72:475-480. https://doi.org/10.1002/ajp.20796.

Kowalewski, M. M., J. S. Salzer, J. C. Deutsch, M. Raño, M. S. Kuhlenschmidt, et al. 2011. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact. American Journal of Primatology 73(1):75-83. https://doi.org/10.1002/ajp.20803.

Kramer, L. D., and A. T. Ciota. 2015. Dissecting vectorial capacity for mosquito-borne viruses. Current Opinion in Virology 15:112-118. https://doi.org/10.1016/j.coviro.2015.10.003.

Lane, J. 1953. Neotropical Culicidae. Vol I. Sao Paulo: University of São Paulo, Brazil.

Leporace, M., A. A. Lizuain, M. L Villarquide, A. C. Galarza, O. De Souza, M. C. Rilo, and M. S. Santini. 2019. Descripción del primer brote de dengue en la ciudad de Santo Tomé, Corrientes, 2016. Revista Argentina de Salud Pública 10(41):50-54.

Lizuain, A. A., M. Leporace, M. S. Santini, M. E. Utgés and N. Schweigmann. 2019. Update on the distribution of Aedes albopictus (Diptera: Culicidae) in Misiones, Argentina. Revista do Instituto de Medicina Tropical de Sao Paulo 61:1-6. https://doi.org/10.1590/S1678-9946201961046.

Lizuain, A. A., L. Maffey, M. Garzón, M. Leporace, D. Soto, et al. 2022. Larval competition between Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Argentina: coexistence and implications in the distribution of the Asian tiger mosquito. Journal of Medical Entomology 59(5):1636-1645. https://doi.org/10.1093/jme/tjac102.

Lounibos, L. P., R. L. Escher, and R. Lourenço-De-Oliveira. 2003. Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96(4):512-518. https://doi.org/10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2.

Lounibos, L. P. 2002. Invasions by insect vectors of human disease. Annual Review of Entomology 47:233-266. https://doi.org/10.1146/annurev.ento.47.091201.145206.

Mares-Guia, M. A. M. D. M., M. A. Horta, A. Romano, C. D. Rodrigues, M. C. Mendonça, C. C. Dos Santos, et al. 2020. Yellow fever epizootics in non-human primates, Southeast and Northeast Brazil (2017 and 2018). Parasites and Vectors 13:1-8. https://doi.org/10.1186/s13071-020-3966-x.

MSN, Ministerio de Salud de la Nación. 2018. Boletín integrado de vigilancia N411. URL: tinyurl.com/552456k7.

Mogi, M., I. Miyagi, K. Abadi, and Syafruddin. 1996. Inter- and Intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. Journal of Medical Entomology 33(1):53-57. https://doi.org/10.1093/jmedent/33.1.53.

Moreno, E. S., I. M. Rocco, E. S. Bergo, R. A. Brasil, M. M Siciliano, A. Suzuki, V. R. Silveira, I. Bisordi, and R. P. D. Souza. 2011. Reemergence of yellow fever: detection of transmission in the State of São Paulo, Brazil, 2008. Revista da Sociedade Brasileira de Medicina Tropical 44:290-296. https://doi.org/10.1590/S0037-86822011005000041.

Nanni, A. S., M. Piquer Rodríguez, D. Rodríguez, M. Nuñez Regueiro, M. E. Periago, et al. 2020. Presiones sobre la conservación asociadas al uso de la tierra en las ecorregiones terrestres de la Argentina. Ecología Austral 30(2):304-320. https://doi.org/10.25260/EA.20.30.2.0.1056.

de Oliveira, M. S., C. H. Andrade, F. S. Campos, J. da C. Cardoso, M. E. Gonçalves-dos-Santos, et al. 2023. Yellow Fever Virus Maintained by Sabethes Mosquitoes during the Dry Season in Cerrado, a Semiarid Region of Brazil, in 2021. Viruses 15(3):757. https://doi.org/10.3390/v15030757.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, et al. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28(1):40-63. https://doi.org/10.25260/EA.18.28.1.0.399.

Pinto, C. S., U. E. C. Confalonieri, and B. M. Mascarenhas. 2009. Ecology of Haemagogus sp. And Sabethes sp. (Diptera: Culicidae) in relation to the microclimates of the Caxiuanã National Forest, Pará, Brazil. Memorias do Instituto Oswaldo Cruz 104(4):592-598. https://doi.org/10.1590/S0074-02762009000400010.

R Core Team. 2023. R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL: R-project.org.

Rossi, G. C., E. A. Lestani, and M. J. D’Oria. 2006. Nuevos registros y distribución de mosquitos de la Argentina (Diptera: Culicidae). Revista de la Sociedad Entomológica Argentina 65:51-56.

Rossi, G. C., N. T. Pascual, and F. J. Krsticevic. 1999. First record of Aedes albopictus (Skuse) from Argentina. Journal of the American Mosquito Control Association 15(3):422.

Schweigmann, N., D. Vezzani, P. Orellano, J. Kuruc, and R. Boffi. 2004. Aedes albopictus in an area of Misiones. Revista de Saúde Pública 38(1):2003-2005. https://doi.org/10.1590/S0034-89102004000100020.

Shannon, R. C., and E. Delponte. 1928. Los Culicidos en Argentina. Revista del Instituto Bacteriológico 1(5):29-140.

Sota, T., and M. Mogi. 1992. Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia 90(3):353-358. https://doi.org/10.1007/BF00317691.

Yin, Q., L. Li, X. Guo, R. Wu, B. Shi, et al. 2019. A field-based modeling study on ecological characterization of hourly host-seeking behavior and its associated climatic variables in Aedes albopictus. Parasites and Vectors 12(1):1-14. https://doi.org/10.1186/s13071-019-3715-1.

Mosquito vectors of yellow fever virus in areas of epidemiological risk in northeastern Argentina

Downloads

Published

2024-07-25

How to Cite

Lizuain, A. A., Muttis, E., Leporace, M., Cano, M. E., Acardi, S., Sánchez Gavier, F., Ayala, M. M., Brividoro, M. V., Marti, G. A., Micieli, M. V., & Manteca-Acosta, M. (2024). Mosquito vectors of yellow fever virus in areas of epidemiological risk in northeastern Argentina. Ecología Austral, 34(2), 393–400. https://doi.org/10.25260/EA.24.34.2.0.2254

Issue

Section

Short Communications