Potential uses of botanical extracts of Larrea and Grindelia in organic agriculture: Effects on soil properties and functional traits relative to growth

Authors

  • Lucía C. Marino Universidad Nacional de la Patagonia San Juan Bosco-FCNyCS. Puerto Madryn, Argentina. CONICET-MEF. Trelew, Argentina
  • Marina Richeri Universidad Nacional de la Patagonia San Juan Bosco-FCNyCS. Puerto Madryn, Argentina
  • Dante Borzone Facultad de Ingeniería y Ciencias Exactas y Naturales-Universidad Favaloro. Ciudad Autónoma de Buenos Aires, Argentina
  • Luciana González Paleo Universidad Nacional de la Patagonia San Juan Bosco-FCNyCS. Puerto Madryn, Argentina. CONICET-MEF. Trelew, Argentina

DOI:

https://doi.org/10.25260/EA.24.34.3.0.2296

Keywords:

biostimulants, ferment, infusion, productivity, soil respiration

Abstract

Biostimulants—including botanical extracts—are natural preparations that have no negative effects on environmental health or populations and improve soil health and plant growth. Our objective was to evaluate the use of botanical extracts from two native species of the Patagonian Monte, an infusion of Larrea nitida (5%-L5 and 10%-L10) and a ferment of Grindelia chiloensis (5%-G5 and 10%-G10), on soil properties and the growth of a model plant (Triticum aestivum). While the 5% and 10% Grindelia ferments increased microbial respiration, soil N and C content, and biomass production, the 10% Larrea infusion inhibited microbial respiration and decreased total biomass. The Grindelia ferment has potential for use as a biostimulant in agroecological production, whereas the Larrea infusion does not show potential for such use. The inhibitory effect of phenolic compounds on microbial activity and plant growth should be addressed in future studies.

References

Aerts, R., and F. S. Chapin III. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1-67. https://doi.org/10.1016/S0065-2504(08)60016-1.

Adamczyk, B., S. Adamczyk, A. Smolander, and V. Kitunen. 2011. Tannic acid and Norway spruce condensed tannins can precipitate various organic nitrogen compounds. Soil Biology and Biochemistry 43(3):628-637. https://doi.org/10.1016/j.soilbio.2010.11.034.

Amani, S.M., M. I. Isla, M. A. Vattuone, M. P. Poch, N. G. Cudmani, and A. R. Sampietro. 1998. Antimicrobial activities in some Argentine medicinal plants. Acta Horticulturae 501:115-122. https://doi.org/10.17660/ActaHortic.1999.501.15.

Amoroso, R., P. Navarta, A. Di Fabio, and J. Petrone. 2015. Uso de fisioterapia combinada con geles y extractos a base de lignanos de jarilla y capsaicina aplicado en dolor articular. http://repositorio.umaza.edu.ar/handle/00261/355.

Anesini, C., and C. Pérez. 1993. Screening of plants used in Argentine folk medicine for antimicrobial activity. Journal of Ethnopharmacology 39:119-128. https://doi.org/10.1016/0378-8741(93)90027-3.

Avis, T. J., V. Gravel, H. Antoun, and R. J. Tweddell. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry 40(7):1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013.

Berendsen, R. L., C. M. J. Pieterse, and P. A. H. M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17(8):478-486. https://doi.org/10.1016/j.tplants.2012.04.001.

Bloom, A. J., F. S. Chapin, and H. A. Mooney. 1985. Resource Limitation in Plants-An Economic Analogy. Annual Review of Ecology and Systematics 16(1):363-392. https://doi.org/10.1146/annurev.es.16.110185.002051.

Bradley, R. L., B. D. Titus, and J. W. Fyles. 1997. Plant and Soil 195(2):209-220. https://doi.org/10.1023/A:1004263716346.

Bulgari, R., G. Cocetta, A. Trivellini, P. Vernieri, and A. Ferrante. 2015. Biostimulants and crop responses: a review. Biol Agric Hortic 31:1-17. https://doi.org/10.1080/01448765.2014.964649.

Bulgari, R., G. Franzoni, and A. Ferrante. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306. https://doi.org/10.3390/agronomy9060306.

Bulgari, R., N. Podetta, G. Cocetta, A. Piaggesi, and A. Ferrante. 2014. The effect of a complete fertilizer for leafy vegetable production in family and urban gardens. Bulg J Agric Sci 20:1361-1367. URL: agrojournal.org/20/06-12.pdf.

Calvo, P., L. Nelson, and J.W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383:3-41. https://doi.org/10.1007/s11104-014-2131-8.

Campos, E. V. R., P. L. F. Proença, J. L. Oliveira, M. Bakshi, P. C. Abhilash, and L. F. Fraceto. 2019. Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic 105:483-495. https://doi.org/10.1016/j.ecolind.2018.04.038.

Carillo, P., G. Colla, C. El-Nakhel, P. Bonini, L. D’Amelia, E. Dell’Aversana, et al. 2019a. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimes by improving physiological parameters. Agronomy 9(5):249. https://doi.org/10.3390/agronomy9050249.

Carillo, P., G. Colla, G. M. Fusco, E. Dell’Aversana, C. El-Nakhel, M. Giordano, et al. 2019b. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 9(8):450. https://doi.org/10.3390/agronomy9080450.

Castells, E., J. Penuelas, and D. W. Valentine. 2004. Are phenolic compounds released from the Mediterranean shrub Cistus albidus responsible for changes in N cycling in siliceous and calcareous soils? New Phytologist 162(1):187-195. https://doi.org/10.1111/j.1469-8137.2004.01021.x.

Castells, E. 2008. Indirect effects of phenolics on plant performance by altering nitrogen cycling: another mechanism of plant-plant negative interactions. Allelopathy in Sustainable Agriculture and Forestry:137-156. https://doi.org/10.1007/978-0-387-77337-7_7.

Chapin, F. S., K. Autumn, and F. Pugnaire. 1993. Evolution of suites of traits in response to environmental stress. The American Naturalist 142:78-92. https://doi.org/10.1086/285524.

Cornelissen, J. H. C., B. Cerabolini, P. Castro-Díez, P. Villar-Salvador, G. Montserrat-Martí, J. P. Puyravaud, R. Aerts, et al. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14(3):311-322. https://doi.org/10.1111/j.1654-1103.2003.tb02157.x.

Cortois, R., T. Schröder-Georgi, A. Weigelt, W. H. van der Putten, and G. B. De Deyn. 2016. Plant-soil feedbacks: role of plant functional group and plant traits. Journal of Ecology 104(6):1608-1617. https://doi.org/10.1111/1365-2745.12643.

Costa, J. A. V., B. C. B. Freitas, C. G. Cruz, J. Silveira, and M. G. Morais. 2019. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 54:366-375. https://doi.org/10.1080/03601234.2019.1571366.

Cozzolino, E., M. Giordano, N. Fiorentino, C. El-Nakhel, A. Pannico, I. Di Mola, et al. 2020. Appraisal of biodegradable mulching films and vegetal-derived biostimulant application as eco-sustainable practices for enhancing lettuce crop performance and nutritive value. Agronomy 10(3):427. https://doi.org/10.3390/agronomy10030427.

Craine, J. M. 2009. Resource strategies of wild plants. Princeton University Press. Princeton, New Jersey, USA. https://doi.org/10.1515/9781400830640.

Davicino, R., R. Martino, and C. Anesini. 2011. Larrea divaricata Cav.: Scientific evidence showing its beneficial effects and its wide potential application. Bol Latinoam Caribe Plant Med Aromat 10(2):92-103. URL: redalyc.org/articulo.oa?id=85617384002.

De Pascale, S., Y. Rouphael, and G. Colla. 2017. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur J Hortic Sci 82:277-285. https://doi.org/10.17660/eJHS.2017/82.6.2.

Desoky, E-S. M., A. S. Elrys, and M. M. Rady. 2019a. Licorice root extract boosts Capsicum annuum L. production and reduces fruit contamination on a heavy metals-contaminated saline soil. Int Lett Nat Sci 73:1-16. https://doi.org/10.18052/www.scipress.com/ILNS.73.1.

Desoky, E.-S. M., A. I. ElSayed, A.-R. M. A. Merwad, and M. M. Rady. 2019b. Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol Biochem 142(9):292-302. https://doi.org/10.1016/j.plaphy.2019.07.020.

Discole, H., C. O’Donell, and A. Lourteig. 1940. Revisión de las zygophyllaceas argentinas. Llilloa 5(2):253-347. URL: tinyurl.com/53pd9ucm.

Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021.

Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11(12):3417. https://doi.org/10.3390/su11123417.

Elakovich, S. D., and K. L. Stevens. 1985. Phytotoxic properties of nordihydroguaiaretic acid, a lignan from Larrea tridentata (Creosote bush). Journal of Chemical Ecology 11(1):27-33. https://doi.org/10.1007/bf00987601.

Ertani, A., D. Pizzeghello, O. Francioso, P. Sambo, S. Sánchez-Cortes, and S. Nardi. S. 2014. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front Plant Sci 5:375. https://doi.org/10.3389%2Ffpls.2014.00375.

Fageria, N. K. 2012. Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43(16):2063-2113. https://doi.org/10.1080/00103624.2012.697234.

Fess, T. L., and V. A. Benedito. 2018. Organic versus conventional cropping sustainability: a comparative system analysis. Sustainability 10(1): 272. https://doi.org/10.3390/su10010272.

Findura, P., P. Hara, A. Szparaga, S. Kocira, E. Czerwińska, P. Bartoš, J. Nowak, and K. Treder. 2020. Evaluation of the effects of allelopathic aqueous plant extracts, as potential preparations for seed dressing, on the modulation of cauliflower seed germination. Agriculture 10(4):122. https://doi.org/10.3390/agriculture10040122.

Franzoni, G., G. Cocetta, B. Prinsi, A. Ferrante, and L. Espen. 2022. Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae 8(3):189. https://doi.org/10.3390/horticulturae8030189.

Gallo, M. E., A. Porras-Alfaro, K. J. Odenbach, and R. L. Sinsabaugh. 2009. Photoacceleration of plant litter decomposition in an arid environment. Soil Biol Biochem 41(7):1433-1441. https://doi.org/10.1016/j.soilbio.2009.03.025.

Gastaldi, B. 2019. Análisis de los compuestos fenólicos y volátiles de plantas medicinales y aromáticas del noroeste de la Patagonia Argentina, estudio de las actividades antioxidante y citotóxica. Tesis doctoral. Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina. Pp. 177. URL: hdl.handle.net/11336/82836.

Godlewska, K., P. Pacyga, I. Michalak, A. Biesiada, A. Szumny, N. Pachura, and U. Piszcz. 2021a. Systematic investigation of the effects of seven plant extracts on the physiological parameters, yield, and nutritional quality of radish (Raphanus sativus var. sativus). Front Plant Sci 12:651152. https://doi.org/10.3389/fpls.2021.651152.

Godlewska, K., D. Ronga, and I. Michalak. 2021b. Plant extracts-importance in sustainable agriculture. Italian Journal of Agronomy 16:1851. https://doi.org/10.4081/ija.2021.1851.

González-Paleo, L., and D. A. Ravetta. 2018. Relationship between photosynthetic rate, water use and leaf structure in desert annual and perennial forbs differing in their growth. Photosynthetica 56(4):1177-1187. https://doi.org/10.1007/s11099-018-0810-z.

Grime, J. P., K. Thompson, R. Hunt, J. G. Hodgson, J. H. C. Cornelissen, et al. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79(2):259-81. https://doi.org/10.2307/3546011.

Guerrero-Ortiz, P. L., R. Quintero-Lizaola, V. Espinoza-Hernández, G. S. Benedicto-Valdés, and M. de J. Sánchez-Colín. 2012. Respiración de CO2 como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamericana 30(4):355-362.

Halpern, M., A. Bar‐Tal, M. Ofek, D. Minz, T. Müller, and U. Yermiyahu. 2015. The use of biostimulants for enhancing nutrient uptake. Adv Agron 130:141-74. https://doi.org/10.1016/bs.agron.2014.10.001.

Hättenschwiler, S., and P. M. Vitousek. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution 15(6):238-243. https://doi.org/10.1016/S0169-5347(00)01861-9.

Hoffman, J. J., B. Kingsolver, S. P. McLaughlin, and B. N. Timmermann. 1984. Production of resins by arid-adapted Asteraceae. Pp. 251-271 in B. N. Timmermann, C. Steelink and F. Loewus (eds.). Phytochemical adaptation to stress. Plenum Publishing Co, New York, New York, USA. https://doi.org/10.1007/978-1-4684-1206-2_9.

Holdaway, R. J., S. J. Richardson, I. A. Dickie, D. A. Peltzer, and D. A. Coomes. 2011. Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology 99:954- 963. https://doi.org/10.1111/j.1365-2745.2011.01821.x.

Hütsch, B. W., J. Augustin, and W. Merbach. 2002. Plant rhizodeposition - an important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science 165(4):397-407. https://doi.org/10.1002/1522-2624(200208)165:4%3C397::AID-JPLN397%3E3.0.CO;2-C.

Janzen, H. H. 1990. Deposition of nitrogen into the rhizosphere by wheat roots. Soil Biology and Biochemistry 22(8):1155-1160. https://doi.org/10.1016/0038-0717(90)90043-Y.

John, J., and S. Sarada. 2012. Role of phenolics in allelopathic interactions. Allelopathy Journal 29:215-230.

Jäger, S., M. Beffert, K. Hoppe, D. Nadberezny, B. Frank, and A. Scheffler. 2011. Preparation of herbal tea as infusion or by maceration at room temperature using mistletoe tea as an example. Sci Pharm 79:145-156. https://doi.org/10.3797%2Fscipharm.1006-06.

Jang, S. J., and Y. I. Kuk. 2019. Growth promotion effects of plant extracts on various leafy vegetable crops. Hort Sci Technol 6:322-336. https://doi.org/10.7235/HORT.20190033.

Johnson, I. R., and J. H. M. Thornley. 1987. A model for root:shoot partitioning and optimal growth. Annals of Botany 60(2):133-142. https://doi.org/10.1093/oxfordjournals.aob.a087429.

Kocira, S., A. Sujak, T. Oniszczuk, A. Szparaga, M. Szymanek, H. Karakuła-Juchnowicz, A. Krawczuk, and K. Kupryaniuk. 2018. Improvement of the photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica L.) through foliar application of a nitrophenolate-based biostimulant. BIO Web Conf 10:01009. https://doi.org/10.1051/bioconf/20181001009.

Kocira, S., A. Szparaga, A. Krawczuk, P. Bartoš, G. Zaguła, M. Plawgo, and P. Cerný. 2021. Plant material as a novel tool in designing and formulating modern biostimulants - analysis of botanical extract from linum usitatissimum l. Materials 14(21):6661. https://doi.org/10.3390/ma14216661.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer. Heidelberg, Baden-Wurtemberg, German.

Knipe, D., and C. H. Herbel. 1966. Germination and growth of some semidesert grassland species treated with aqueous extract from creosotebush. Ecology 47(5):775-781. https://doi.org/10.2307/1934264.

Kramer-Walter, K. R., P. J. Bellingham, T. R. Millar, R. D. Smissen, S. J. Richardson, and D. C. Laughlin. 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant’s economic spectrum. Journal of Ecology 104(5):1299-1310. https://doi.org/10.1111/1365-2745.12562.

Kumar, H. D., and P. Aloke. 2020. Role of biostimulant formulations in crop production: an overview. International Journal of Agricultural Sciences and Veterinary Medicine 8(2):38-46.

Kumari, M., P. Swarupa, K. K. Kesari, and A. Kumar. 2023. Microbial inoculants as plant biostimulants: a review on risk status. Life 13(1):12. https://doi.org/10.3390/life13010012.

Kumawat, K. C., P. Sharma, S. Nagpal, R. K. Gupta, A. Sirari, R. M. Nair, H. Bindumadhava, and S. Singh. 2021. Dual microbial inoculation, a game changer? Bacterial biostimulants with multifunctional growth promoting traits to mitigate salinity stress in Spring Mungbean. Front Microbiol 11:600576. https://doi.org/10.3389/fmicb.2020.600576.

Lambers, H., F. S. Chapin III, and T. L. Pons. 1998. Plant physiological ecology. Springer. Cham, Canton of Zug, Swiss. https://doi.org/10.1007/978-1-4757-2855-2.

Leite, M. F. A., Y. Pan, J. Bloem, H. Berge, and E. E. Kuramae. 2017. Organic nitrogen rearranges both structure and activity of the soil‐borne microbial seedbank. Sci Rep 7:42634. https://doi.org/10.1038/srep42634.

Li, S., and C. Zhihui. 2009. Allium sativum extract as a biopesticide affecting pepper blight. Int J Veget Sci 15:13-23. https://doi.org/10.1080/19315260802446377.

Mabry, T. J., J. H. Hunziker, and D. R. DiFeo. 1977. The natural products: chemistry of Larrea. In Creosote Bush Biology and Chemistry of Larrea in New World Desserts. Halsted Press. Stroudsburg, Pennsylvania, USA.

Magyar, G., Á. Kun, B. Oborny, and J. F. Stuefer. 2007. Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New Phytologist 174(1):182-193. https://doi.org/10.1111/j.1469-8137.2007.01969.x.

Mahall, B. E., and R. M. Callaway. 1992. Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73(6):2145-2151. https://doi.org/10.2307/1941462.

Mesurado, M. de los A., A. Chalup, J. Ortiz, J. D. Z. Puchol, G. E. Feresin, A. Bardón, and E. Cartagena. 2021. The activity of grindelanes against important maize pest Spodoptera frugiperda and their selectivity of action on non‐target environmental bacteria. Entomologia Experimentalis et Applicata 169(9):825-837. https://doi.org/10.1111/eea.13067.

Obermeyer, W. R., S. M. Musser, J. M. Betz, R. E. Casey, A. E. Pohland, and S. W. Page. 1995. Chemical studies of phytoestrogens and related compounds in dietary supplements: Flax and Chaparral. Proc Soc Exp Biol Med 208(1):6-12. https://doi.org/10.3181/00379727-208-43824.

Oparaeke, A. M. 2007. Synergistic activity of aqueous extracts mixtures of some Nigerian plants against Maruca vitrata and Clavigralla tomentosicollis on field cowpea, Vigna unguiculata (L.) Walp. Arch Phytopathol Plant Protect 40(4):257-63. https://doi.org/10.1080/03235400500383982.

Quiroga, E. N., A. R. Sampietro, and M. A. Vattuone. 2001. Screening antifungal activities of selected medicinal plants. Journal of Ethnopharmacology 74(1):89-96. https://doi.org/10.1016/s0378-8741(00)00350-0.

Paleckiene, R., A. Sviklas, and R. Šlinkšiene. 2007. Physicochemical properties of a microelement fertilizer with amino acids. Russ J Appl Chem 80(3):352-357. https://doi.org/10.1134/S1070427207030020.

Paradiković, N., T. Teklić, S. Zeljković, M. Lisjak, and M. Špoljarević. 2018. Biostimulants research in some horticultural plant species—a review. Food Energy Secur 8:1-17. https://doi.org/10.1002/fes3.162.

Pereira, A. D. E. S., H. C. Oliveira, and L. F. Fraceto. 2019. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci Rep 9(1):7135. https://doi.org/10.1038/s41598-019-43494-y.

Popko, M., I. Michalak, R. Wilk, M. Gramza, K. Chojnacka, and H. Górecki. 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23(2):470. https://doi.org/10.3390/molecules23020470.

Prisa, D., and F. Attanasio. 2022. Biostimulant derived from the fermentation of Inula viscosa (Inort) in the germination and growth of Amaranthus hypochondriacus. World Journal of Advanced Research and Reviews 16(01):027-033. https://doi.org/10.30574/wjarr.2022.16.1.0986.

Pylak, M., K. Oszust, and M. Frąc. 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev Environ Sci Biotechnol 18:597-616. https://doi.org/10.1007/s11157-019-09500-5.

Rajnoch, G., D. R. Pérez, and D. A. Ravetta. 2022. Effects of phytochemical crusts formed under two desert shrubs on physical properties of soils in arid ecosystems. Journal of Arid Environments 204:1-8. https://doi.org/10.1016/j.jaridenv.2022.104791.

Ravetta, D. A., A. Anouti, and S. P. McLaughlin. 1996. Resin production of Grindelia accessions under cultivation. Industrial Crops and Products 5(3):197-201. https://doi.org/10.1016/0926-6690(96)89449-0.

Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, et al. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955-1969. https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2.

Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94(25):13730-13734. https://doi.org/10.1073/pnas.94.25.13730.

Rojas-Rojas, K, C. Hernández-Aguirre, and A. Mencía-Guevara. 2021. Transformaciones bioquímicas del cacao (Theobroma cacao L.) durante un proceso de fermentación controlada. Agronomía Costarricense 45(1):53-65. https://doi.org/10.15517/rac.v45i1.45694.

Rose, D. C., W. J. Sutherland, A. P. Barnes, F. Borthwick, C. Ffoulkes, C. Hall, et al. 2019. Integrated farm management for sustainable agriculture: lessons for knowledge exchange and policy. Land Policy 81:834-842. https://doi.org/10.1016/j.landusepol.2018.11.001.

Rouphael, Y., and G. Colla. 2020. Editorial: biostimulants in agriculture. Front Plant Sci 11:40. https://doi.org/10.3389/fpls.2020.00040.

Rouphael, Y., M. Giordano, M. Cardarelli, E. Cozzolino, M. Mori, M. C. Kyriacou, et al. 2018. Plant- and seaweed-based extracts increase yield but differentially modulate the nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8(7):216. https://doi.org/10.3390/agronomy8070126.

Roy, S., A. Mukhopadhyay, and G. Gurusubramanian. 2010. Field efficacy of a biopesticide prepared from Clerodendrum viscosum Vent. (Verbenaceae) against two major tea pests in the sub Himalayan tea plantation of North Bengal, India. J Pest Sci 83:371-7. https://doi.org/10.1007/s10340-010-0306-5.

Ryser, P. 2006. The mysterious root length. Plant and Soil 286(1-2):1-6. https://doi.org/10.1007/s11104-006-9096-1.

Schafer, J. L., E. L. Mudrak, C. E. Haines, H. A. Parag, K. A. Moloney, and C. Holzapfel. 2012. The association of native and non-native annual plants with Larrea tridentata (creosote bush) in the Mojave and Sonoran Deserts. Journal of Arid Environments 87:129-135. https://doi.org/10.1016/j.jaridenv.2012.07.013.

Segesso, L., A. L. Carrera, M. B. Bertiller, and H. Saraví Cisneros. 2019. Soluble phenolics extracted from Larrea divaricata leaves modulate soil microbial activity and perennial grass establishment in arid ecosystems of the Patagonian Monte, Argentina. Plant Ecology 220: 441-456. https://doi.org/10.1007/s11258-019-00926-z.

Shang, Y., M. Kamrul Hasan, G. L. Ahammed, M. Li, H. Yin, and J. Zhou. 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14): 2558. https://doi.org/10.3390/molecules24142558.

Shukla, P. S., E. G. Mantin, M. Adil, S. Bajpai, A. T. Critchley, and B. Prithiviraj. 2019. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci 10:655. https://doi.org/10.3389/fpls.2019.00655.

Singh, S. K., X. Wu, C. Shao, et al. 2022. Microbial enhancement of plant nutrient acquisition. Stress Biology 2(3). https://doi.org/10.1007/s44154-021-00027-w.

Stege, P. W., R. C. Davicino, A. E.Vega, Y. Casali, S. Correa, and B. Micalizzi. 2006. Antimicrobial activity of aqueous extracts of Larrea divaricata Cav (jarilla) against Helicobacter pylori. Phytomedicine 13(9-10):724-727. https://doi.org/10.1016/j.phymed.2005.06.008.

Sulok, K. M. T., O. H. Ahmed, C. Y. Khew, J. A. M. Zehnder, M. B. Jalloh, A. A. Musah, and A. Abdu. 2021. Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A laboratory assessment. Sustainability 13(9):4919. https://doi.org/10.3390/su13094919.

Szparaga, A., S. Kocira, A. Kocira, E. Czerwińska, M. Swieca, E. Lorencowicz, et al. 2018. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front Plant Sci 9:1401. https://doi.org/10.3389/fpls.2018.01401.

Tudu, C., A. Dey, D. K. Pandey, J. S. Panwar, and S. Nandy. 2022. Role of plant derived extracts as biostimulants in sustainable agriculture: A detailed study on research advances, bottlenecks and future prospects. Pp. 159-179 in H. B. Singh and A. Vaishnav (eds.). New and Future Developments in Microbial Biotechnology and Bioengineering. Sustainable Agriculture: Revitalization through Organic Products. Elsevier. https://doi.org/10.1016/B978-0-323-85579-2.00017-4.

Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A. Nasrulhaq Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):573. https://doi.org/10.3390/molecules21050573.

Vilela, A. E., L. González-Paleo, and D. A. Ravetta. 2011. Metabolismo secundario de plantas leñosas de zonas áridas: mecanismos de producción, funciones y posibilidades de aprovechamiento. Ecología Austral 21(3):317-327. URL: tinyurl.com/4mdh364d.

Wang, Y., F. Fu, J. Li, G. Wang, M. Wu, J Zhan, et al. 2016. Effects of seaweed fertilizer on the growth of Malus hupehensis Rehd. seedlings, soil enzyme activities and fungal communities under replant condition. Eur J Soil Biol 75:1-7. https://doi.org/10.1016/j.ejsobi.2016. 04.003.

Wardle, D. A., and M. C. Nilsson. 1997. Microbe-plant competition, allelopathy and arctic plants. Oecologia 109(2):291-293. https://doi.org/10.1007/s004420050086.

Wassner, D., and D. Ravetta. 2000. Vegetative propagation of Grindelia chiloensis (Asteraceae). Industrial Crops and Products 11(1):7-10. https://doi.org/10.1016/S0926-6690(99)00028-X.

Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33(1):125-159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, T. Chapin, J. H. C. Cornelissen, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821-827. https://doi.org/10.1038/nature02403.

Zampini, I. C., N. Cudmani, and M. I. Isla. 2007. Antimicrobial activity of Argentine medicinal plants on antibiotic-resistant bacteria. Acta Bioquímica Clínica Latinoamericana 41(3):385-393. https://doi.org/10.1016/j.jep.2009.05.011.

Zavala, J. A., and D. A. Ravetta. 2002. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecology 161:185-191. https://doi.org/10.1023/A:1020314706567.

Zhou, G., X. Qiu, J. Zhang, and C. Tao. 2019. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting. Bioresour Technol 286:121375. https://doi.org/10.1016/j.biortech.2019. 121375.

Zulfiqar, F., M. Navarro, M. Ashraf, N. A. Akram, and S. Munné-Bosch. 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270. https://doi.org/10.1016/j.plantsci.2019.110270.

Potential uses of botanical extracts of Larrea and Grindelia in organic agriculture: Effects on soil properties and functional traits relative to growth

Downloads

Published

2024-09-01

How to Cite

Marino, L. C., Richeri, M., Borzone, D., & González Paleo, L. (2024). Potential uses of botanical extracts of Larrea and Grindelia in organic agriculture: Effects on soil properties and functional traits relative to growth. Ecología Austral, 448–460. https://doi.org/10.25260/EA.24.34.3.0.2296

Issue

Section

Articles