Recruitment patterns in four species of Physaria (Brassicaceae): implications for maintenance of population density over time in both native and cultivated stands

Authors

  • Luciana González Paleo Museo Egidio Feruglio (CONICET). Trelew, Argentina. Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina.
  • Alejandro Pastor-Pastor Museo Egidio Feruglio (FONCyT). Trelew, Argentina.
  • Marlene Bär-Lamas Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina. Instituto Patagónico para el Estudio de Ecosistemas Continentales (CENPAT-CONICET). Puerto Madryn, Chubut, Argentina.
  • Alejandra Vilela Museo Egidio Feruglio (CONICET). Trelew, Argentina.
  • Damian Ravetta Museo Egidio Feruglio (CONICET). Trelew, Argentina. Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina.

DOI:

https://doi.org/10.25260/EA.16.26.3.0.244

Abstract

Seedling recruitment is a critical stage of a plant’s cycle which determines population viability, the potential for invasiveness of a plant species and the success of establishment of a crop, among other processes. We evaluated the most relevant stages leading to recruitment (seed-rain, the time of seedling emergence, and seedling survival) in four species of Physaria (P. gracilis, P. angustifolia, Physaria pinetorum and P. mendocina) in a field experiment in Patagonia, Argentina, to assess the possibility of using spontaneous recruitment to understand population dynamics and to evaluate the potential of this process as a tool for crop reestablishment. We determined the effect of water availability and initial seedling density on final stand density. The total amount of dispersed seed was higher in P. gracilis and P. pinetorum than in the other two species. Physaria pinetorum germinated in late summer, while P. angustifolia and P. gracilis germinatedin spring. No germination was registered for P. mendocina. In the three species whose seeds germinated, seedling survival was modulated by a density-dependent mechanism. For P. pinetorum seedling density was stable over time in low-density plots, while it decreased in high- and medium-density plots. Still, the highest final density was found in those plots with high initial density. Final density of P. gracilis also responded to irrigation treatment. The amount of dispersed seeds was adequate for the re-establishment of the crop in all four species, although the following stages were species-dependent. An appropriate control of seedling density at the initial stage of crop establishment may play a relevant role in the proper regeneration of the crop.

Author Biographies

Luciana González Paleo, Museo Egidio Feruglio (CONICET). Trelew, Argentina. Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina.

Investigador Asistente, CONICET

Alejandro Pastor-Pastor, Museo Egidio Feruglio (FONCyT). Trelew, Argentina.

Becario

Marlene Bär-Lamas, Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina. Instituto Patagónico para el Estudio de Ecosistemas Continentales (CENPAT-CONICET). Puerto Madryn, Chubut, Argentina.

Becario

Alejandra Vilela, Museo Egidio Feruglio (CONICET). Trelew, Argentina.

Investigador Adjunto

Damian Ravetta, Museo Egidio Feruglio (CONICET). Trelew, Argentina. Universidad Nacional de la Patagonia San Juan Bosco. Chubut, Argentina.

Investigador Independiente

References

Aicher, R. J., L. Larios, and K. N. Suding. 2011. Seed supply, recruitment, and assembly: quantifying relative seed and establishment limitation in a plant community context. Am Nat 178:464-477.

Aiken, R. M., D. Baltensperger, A. D. Pavlista, and J. J. Johnson. 2016. Planting methods affect emergence, flowering and yield of spring oilseed crops in the U.S. central High Plains. Ind Crops Prod 69:273-277.

Álvarez-Buylla, E. R., and M. Martínez-Ramos.1990. Seed bank versus seed rain in the regeneration of a tropical pioneer tree. Oecol 84:314-325

Baskin, J. M., and C. C. Baskin. 2001. Seeds. Ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego. Pp. 665.

Baskin, J. M., and C. C. Baskin. 2004. A classification system for seed dormancy. Seed Sci Res 14:1-16.

Bertiller, M. B., P. Zaixso, M. P. Irisarri, and E. R. Brevedan. 1996. The establishment of Festuca pallescens in arid grasslands in Patagonia (Argentina): the effect of soil water stress. J Arid Environ 32:161-171.

Brahim, K., D. T. Ray, and D. A. Dierig. 1998. Growth and yield characteristics of Lesquerella fendleri as a function of plant density. Ind Crops Prod 9:63-71.

Busso, C. A., G. L. Bonvissuto, and Y. A. Torres. 2012. Seedling recruitment and survival of two desert grasses in the monte of Argentina. Land Degradation and Development 23:116-129.

Cabin, R. J., D. L. Marshall, and R. J. Mitchell. 2000. The demographic role of soil seed banks. II. Investigations of the fate of experimental seeds of the desert mustard Lesquerella fendleri. J Ecol 88:293-302.

Cardwell, V. B. 1984. Seed germination and crop production. In: M. B. Tesar (ed.). Physiological Basis of Crop Growth and Development, American Society of Agronomy and the Crop Science Society of America, 53-92. Madison.

Carr, P. M., W. W. Poland, and L. J. Tisor. 2005. Natural reseeding by forage legumes following wheat in western North Dakota. Agronomy Journal 97:1270-1277.

Cavieres, L. A., and A. Peñaloza. 2012. Facilitation and interference at the intraspecific level: Recruitment of Kageneckia angustifolia D. Don (Rosaceae) in the montane sclerophyllous woodland of central Chile. Perspect Plant Ecol 14:13-19.

Child, R. D., N. Chauvaux, K. John, P. Ulvskov, and H. A. Van Onckelen. 1998. Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. J Exp Bot 49:829-838.

Chimera, C. G., C. E. Buddenhagen, and P. M. Clifford. 2010. Biofuels: The risks and dangers of introducing invasive species Biofuels: the risks and dangers of introducing invasive species. Biofuels 5:785-796.

Cipriotti, P. A., P. Flombaum, O. E. Sala, and M. R. Aguiar. 2008. Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with a patagonian species. J Arid Environ 72:162-174.

Cox, S. 2009. Crop domestication and the first plant breeders. Plant Breeding and Farmer Participation 1-26.

Crews, T. E., and P. C. Brookes. 2014. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agric Ecosys Environ 184:168-181.

Culman, S. W., S. S. Snapp, M. Ollenburger, B. Basso, and L. R. Dehaan. 2013. Soil and water quality rapidly responds to the perennial grain kernza wheatgrass. Agronomy Journal 105:735-744.

De La Cruz, M., R. L. Romao, A. Escudero, and F. T. Maestre. 2008. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31:720-730.

Defosse, G. E., R. Robberecht, and M. B. Bertiller. 1997. Seedling dynamics of Festuca spp. in a grassland of Patagonia, Argentina, as affected by competition, microsites and grazing. J Range Manage 50:73-79.

Dehaan, L. R., and D. L. Van Tassel. 2014. Useful insights from evolutionary biology for developing perennial grain crops. Am J Bot 101:1801-1819.

De Pauw, E. F. 2004. Management of dryland and desert areas. Encyclopedia: Land Use, Land Cover and Soil Sciences - Vol. IV.

Dierig, D. A., A. E. Thompson, and F. S. Nakayama. 1993. Lesquerella commercialization efforts in the United Status. Ind Crops Prod 1:289-293.

Dierig, D. A., G. S. Wang, and S. J. Crafts-Brandner. 2012. Dynamics of reproductive growth of Lesquerella (Physaria fendleri) over different planting dates. Ind Crops Prod 35:146-153.

Donohue, K. 1997. Seed dispersal in Cakileedentula var. lacustris: decoupling the fitness effects of density and distance from the home site. Oecol 110:520-527.

Escudero, A., R. L. Romão, M. Cruz, and F. T. Maestre. 2005. Spatial pattern and neighbour effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community. J Veg Sci 16:383-390.

Firbank, L., and A. Watkinson. 1987. On the analysis of competition at the level of the individual plant. Oecol 71:308-317.

Gilbertson, P. K., M. T. Berti, and B. L. Johnson. 2014. Borage cardinal germination temperatures and seed development. Ind Crops Prod 59:202-209.

Giménez-Benavides, L., A. Escudero, and J. M. Iriondo. 2008. What shapes the altitudinal range of a high mountain Mediterranean plant? Recruitment probabilities from ovule to seedling stage. Ecography 31:731-740.

Gómez, K., and A. Gómez. 1984. Statistical Procedures for Agricultural Research, second ed. John Wiley and Sons, NY.

González-Paleo, L., and D. A. Ravetta. 2011. Indirect changes associated with a selection program for increased seed-yield in wild species of Lesquerella (Brassicaceae): Are we developing a phenotype opposite to the expected ideotype? Ind Crops Prod 34:1372-1380.

González-Paleo, L., and D. A. Ravetta. 2012. Allocation patterns and phenology in wild and selected accessions of annual and perennial Physaria (Lesquerella, Brassicaceae). Euph 186:289-302.

González-Paleo, L., and D. A. Ravetta. 2015. Carbon acquisition strategies uncoupled from predictions derived from species life-cycle. Flora 212:1-9.

James, J. J., T. J. Svejcar, and M. J. Rinella. 2011. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl Ecol 48:961-969.

Kim, S. Y., S. H. Oh, W. H. Hwang, K. Choi, and B. G. Oh. 2008. Optimum soil incorporation time of Chinese milk vetch (Astralagus sinicus L.) for its natural re-seeding and green manuring of rice in Gyeongnam province Korea. Journal of Crop Science and Biotechnology 11:193-198.

Kitajima, K., and M. Fenner. 2000. Ecology of seedling regeneration. Pp. 331-360 in: M. Fenner (ed.). Seeds: the ecology of regeneration in plant communities. Wallingford: CAB, International.

Lambers, J. H. R., and J. S. Clark. 2003. Effects of dispersal, shrubs, and density dependent mortality on seed and seedling distributions in temperate forests. Can J For Res 33:783-795.

Lauenroth, W. K., O. E. Sala, D. P. Coffin, and T. B. Kirchner. 1994. The importance of soil water in the recruitment of Bouteloua gracilis in the shortgrass steppe. Ecol Appl 4:741-749.

Lortie, C. J., and R. Turkington. 2002. The small-scale spatio-temporal pattern of a seed bank in the Negev desert, Israel. Ecoscience 9:407-413.

Mari, L., R. Casagrandi, M. Gatto, T. Avgar, and R. Nathan. 2008. Movement strategies of seed predators as determinants of plant recruitment patterns. Am Nat 172:694-711.

Marone, L., M. E. Horno, and R. G. D. Solar. 2000. Post-dispersal fate of seeds in the Monte desert of Argentina: patterns of germination in successive wet and dry years. J Ecol 88:940-949.

Masnatta, W. J., L. González-Paleo, and D. A. Ravetta. 2012. Estructura y productividad de una población silvestre de Physaria mendocina (Brassicaceae). Implicancias para su desarrollo como cultivo oleaginoso. Eco Austral 22:000-000.

Nathan, R., and H. C. Müller-Landau. 2000. Spatial patterns of seed dispersal, they determinants and consequences for recruitment. Trends Ecol Evol 15:278-285.

Novoplansky, A., and D. E. Goldberg. 2001. Effects of water pulsing on individual performance and competitive hierarchies in plants. J Veg Sci 12:199-208.

Ortiz-Monasterio, I., S. S. Dhillon, and R. A. Fischer. 1994. Date of sowing effects in grain yield and yield components of spring wheat cultivars and their relationship with radiation and temperature in Date of sowing effects on grain yield and yield components of and temperature in Ludhiana, India. Field Crops Res 37:169-184.

Pérez-Álvarez, G. G. 2015. Contexto de las políticas agrarias en los proyectos de desarrollo para Patagonia: el “Informe Altimir” en la provincia de Chubut. Mundo Agrario 16:33-53.

Pimentel, D., C. Harvey, P. Resosudarmo, K. Sinclair, D. Kurz, et al. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117-1123.

Pimentel, D., D. Cerasale, R. C. Stanley, R. Perlman, E. M. Newman, L. C. Brent, et al. 2012. Annual vs. perennial grain production. Agriculture, Ecosystems and Environment 161:1-9.

Ploschuk, E. L., G. Cerdeiras, L. Windauer, D. A. Dierig, and D. A. Ravetta. 2003. Development of alternative Lesquerella species in Patagonia (Argentina): potential of Lesquerella angustifolia. Ind Crops Prod 00:1-6.

Poeplau, C., A. Don, L. Vesterdal, J. Leifeld, B. Van Wesemael, J. Schumacher, and A. Gensior. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Global Change Biology 17:2415-2427.

Price, J. S., M. A. Neale, R. N. Hobson, and D. M. Bruce. 1996. Seed losses in commercial harvesting of Oilseed Rape. Eng J Agric Res 80:343-350.

Puppala, N., J. L. Fowler, T. L. Jones, L. Gutschick, and L. Murray. 2004. Evapotranpiration, yield, and water-us efficiency responses of Lesquerella fendleri at different growth stages. Ind Crops Prod 21:33-47.

Ravetta, D. A., and A. Soriano. 1998. Alternatives for the development of new industrial crops for Patagonia. Ecol Aust 8:297-307.

Raven, P. H., R. F. Evert, and S. E. Eichhorn. 1986. Biology of plants. Worth Publishers, Inc., New York.

Sagnard, F., C. Pichot, P. Dreyfus, P. Jordano, and B. Fady. 2007. Modelling seed dispersal to predict seedling recruitment: recolonization dynamics in a plantation forest. Ecol Model 203:464-474.

Sedbrook, J. C., W. B. Phippen, and M. D. Marks. 2014. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: Example pennycress (Thlaspi arvense L.). Plant Science 227:122-132.

Soriano, A., and O. Sala. 1986. Emergence and survival of Bromus setifolius seedlings in different microsites of a Patagonian arid steppe. Israel Journal of Botany 35:91-100.

Spiegel, O., and R. Nathan. 2012. Empirical evaluation of directed dispersal and density-dependent effects across successive recruitment phases. J Ecol 100:392-404.

Tilman, D. 1993. Species richness of experimental productivity gradients: how important is colonization limitation? Ecology 74:2179-2191.

Tilman, D., and D. Wedin. 1991. Plant traits and resource reduction for 5 grasses growing on nitrogen gradient. Ecology 72:685-700.

Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418:671-677.

Utsugi, E., H. Kanno, N. Ueno, M. Tomita, T. Saitoh, M. Kimura, K. Kanou, and K. Seiwa. 2006. Hardwood recruitment into conifer plantations in Japan: Effects of thining and distance from neighboring hardwood forests. For Ecol Manage 237:15-28.

Vilela, A. E., and L. González-Paleo. 2015. Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. J Arid Environ 113:51-58.

Wang, B. C., and T. B. Smith. 2002. Closing the seed dispersal loop. Trends Ecol. Evol. 17:379-385.

Weiher, E., and P. A. Keddy. 1999. Relative Abundance and Evenness Patterns along Diversity and Biomass Gradients. Oikos 87:355-361.

Windauer, L., A. Altuna, and R. Benech-Arnold. 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Ind Crops Prod 25:70-74.

Zanetti, F., A. Monti, and M. Berti. 2013. Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Ind Crops Prod 50:580-595.

Patrones de reclutamiento en cuatro especies de Physaria (Brassicaceae): implicancias para el mantenimiento de la densidad en poblaciones silvestres y en cultivo

Downloads

Additional Files

Published

2016-12-26

How to Cite

González Paleo, L., Pastor-Pastor, A., Bär-Lamas, M., Vilela, A., & Ravetta, D. (2016). Recruitment patterns in four species of Physaria (Brassicaceae): implications for maintenance of population density over time in both native and cultivated stands. Ecología Austral, 26(3), 311–322. https://doi.org/10.25260/EA.16.26.3.0.244